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ABSTRACT: 

Timely and accurate bathymetry information is needed to support an effective policy on utilization and 

management of coastal natural resources. Satellite derived bathymetry (SDB) has been widely 

considered as an advanced and low-cost method for shallow water depth estimation. This is due to the 

availability of multi-temporal and multi-resolution satellite data. This study focuses on evaluating the 

accuracy of satellite derived bathymetry derived from multispectral images recorded by various sensors 

with various spatial resolution. The study area is located in a small island nearby Morotai Island, 

Indonesia. Four SDB models were compared. The implementation of the SDB model was carried out 

by combining echo-sounding measurements and the reflectance of blue, green, red, and near infrared 

bands of three satellite images (World View 2, Sentinel 2A and Landsat 8). Our findings reveal that all 

three satellite images performed well in assessing SDB at various spatial and spectral resolution, 

however, the use of high-resolution imagery did not always improve accuracy, for example when using 

SVM (Support Vector Machine). When using RF (Random Forest), Sentinel 2A produced the best 

accuracy and when using GAM (Generalized Additive Model), the most feasible result was generated 

only by using WorldView 2 image. In all cases, RF performed well and provided the most accurate 

SDB prediction. 
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1. INTRODUCTION 

Indonesia as one of the countries with the longest coastline in the world requires an efficient 

coastal management. In order to support effective policy on utilization and management of coastal 

natural resources, timely and accurate information such as bathymetry information is needed (Pacheco 

et al., 2015). Accurate satellite derived bathymetry is considered of fundamental aspect towards 

monitoring sea floor and deriving nautical charts to support marine navigation. Furthermore, an 

accurate bathymetry information is necessary to develop shoreline and terrain model, basis data for 

hydrodynamic modelling, water sediment monitoring, water quality, reconnaissance survey and coral 

reef monitoring (Hartmann, Wettle and Heege, 2017; Chybicki, 2018).  

Remote sensing technology has been widely used to provide shallow water depth information 

(Brando et al., 2009), because of availability of multi-temporal and multi-resolution satellite data. In 

addition, remote sensing technique is more efficient in terms of time and budget due to its capability 

to cover large areas (Cahalane et al., 2019; Kumari and Ramesh, 2020; Zhang et al., 2021). Various 

methods have been adopted for acquiring shallow water depth information. Conventional methods for 

i.e., ship-borne echo sounding measurements has restriction in a very shallow area due to safety reason  

(Pattanaik, Sahu and Bhutiyani, 2015). Meanwhile, LIDAR as an optical remote sensing technique 

can produce highly accurate measurements. However, LIDAR measurement over an area is also very 

expensive (Kanno et al., 2013; Kumari and Ramesh, 2020). To overcome those limitation, satellite 

derived bathymetry (SDB) has been used to estimate the nearshore bathymetry (Philpot, 1989; 

Stumpf, Holderied and Sinclair, 2003; Kanno et al., 2013; Chénier, Faucher and Ahola, 2018). 
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Multiple algorithms have been proposed to develop the SDB models by using single band 

(Gholamalifard et al., 2013) and multispectral bands (Vinayaraj, Raghavan and Masumoto, 2016; 

Chénier, Faucher and Ahola, 2018; Sagawa et al., 2019). The SDB algorithms fall into two broad 

categories: analytical and empirical method. The analytical method works based on the ability of light 

to penetrate water which requires inputs of various parameters of atmosphere, water column and 

bottom material (Green et al., 2000). Obtaining the atmosphere and water properties is difficult and 

requires large samples from field measurement (Gao, 2009). Therefore, the empirical model has 

become an alternative method since it requires fewer parameters such as training data from echo 

sounding measurement. The empirical method was implemented based on the relationship between 

the reflectance of water recorded by sensor and the water depth at sampled locations (Gao, 2009; 

Hartmann, Wettle and Heege, 2017; Vinayaraj, 2017). 

This research focuses on assessing the performance of four SDB algorithms in extracting shallow 

water depth information by using three different sensors. The methods namely GAM (Generalized 

Additive Model), MLR (Multiple Linear Regression), SVM (Support Vector Machine) and RF 

(Random Forest) were tested in small islands located in the southwest of Morotai Island, Indonesia. 

Three sensors namely: WorldView 2, Sentinel 2A and Landsat 8 OLI/TIRS were used, and several 

studies have reported the use of each sensors (Chénier, Faucher and Ahola, 2018; Traganos et al., 

2018; Sagawa et al., 2019). In this study, comparisons between four SDB techniques as well as 

accuracy assessments using available bathymetric data were done in order to identify approaches that 

have the best performance given the environmental conditions of the study site at the time of image 

acquisition. We used multiple spatial and spectral resolutions to investigate their influences on the 

accuracy of bathymetry models. Thus, the objectives of this study can be summarized as follows: 

a.  To determine the best SDB model for each satellite product through four SDB algorithms. 

b.  To compare GAM, MLR, SVM and RF for their SDB prediction accuracies together with 

the significance of each model’s parameter found from objective (a). 

 

2. METHODOLOGY 

 2.1. Study area 

The SDB models were implemented over shallow water area of small islands located in the 

southwest of Morotai Island, North Moluccas Province, Indonesia (Fig. 1). The central point of the 

study area is at geographical coordinates 2° 7' 30" N and 128° 13' 23" E. The small islands are part of 

the administrative area of Galo-galo Village. Waters in Galo-galo Village is generally clear with 

visibility around 10 m (Ismail, 2007). The bottom is composed of sand, seagrass and life coral (Wijaya 

et al., 2012; S. Halim, 2017).  

 

2.2. Remote sensing dataset 

Images used in this study are listed in Tab. 1, consisting of WorldView 2, Sentinel 2A and 

Landsat 8 OLI/TIRS with 2, 10 and 30 m spatial resolution. The WorldView 2 image was obtained 

from Indonesia Geospatial Information Agency (BIG) in Ortho Ready Standard (OR2A) product. The 

product is radiometrically corrected and sensor corrected (DigitalGlobe, 2013). Meanwhile, the 

Sentinel 2A image was in the Level-2A product and obtained from the Copernicus Open Access (ESA 

et al., 2018). The available product has undergone a standard radiometric and geometric corrections 

(ESA, 2015). The third image used is Landsat 8 OLI/TIRS which was obtained freely from USGS 

Earth Explorer (USGS, 2019). For this image, the surface reflectance format was used and a standard 

radiometric and geometric corrections has been implemented by the provider (USGS, 2015). In 

addition, for extracting shallow water depth information, four spectral bands were used as in Tab. 1. 

All bands were in visible and near infrared bands. 
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Fig. 1. Study area in small islands located at the southwest of Morotai Island, North Moluccas Province, 

Indonesia. Red rectangle shows the study area location. The National Marine Environmental Map is used as the 

background. 
 

Table 1. 
Input images for the SDB model in this study. 

Images Acquisition Date Resolution (m) Product format 

WorldView 2 March 31st, 2013 2 Ortho Ready Standard 

Sentinel 2A May 21st, 2019 10 Level-2A 

Landsat 8 OLI/TIRS February 20th, 2019 30 Surface Reflectance 
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2.3.  Bathymetry data 

For Morotai Island and surroundings, the best data available from the Indonesia Geospatial 

Information Agency’s survey database were multibeam and single beam echosounder surveys 

completed in August 2018. All datasets were corrected for zero tidal influences by BIG. In this case, 

the depth measured by echosounder was corrected by adding or subtracting a tidal height which was 

derived from hourly tide predictions (Bramante, Raju and Sin, 2013; Siermann et al., 2014). These 

tide prediction data were obtained from the nearest tide gauge station, namely: Jailolo Tide Gauge 

Station in Halmahera Island, North Moluccas Province. Therefore, for this study, no additional tidal 

correction is needed as the SDB relationships are based on tide-corrected data. The depth information 

from the Single Beam Echo Sounder (SBES) ranges from 3 m up to 30 m. Tab. 2 summarizes the 

number of measurement points available within 3 m depth ranges. 

Table 2. 
Number of measurement points within 2 m depth ranges for hydrographic data. 

Overall 0–3 m 3–6 m 6–9 m 9–12 m 12–15 m 15–30 m 

62,150 N/A 35,007 7,421 4,353 2,490 12,879 

 

In this research, two scenarios were set for the selection of training data to be included in the 

SDB model. In the first scenario, we selected randomly 20% of training data from the SBES 

measurements points, and the remaining 80% for the accuracy assessment of the SDB model. 

Meanwhile, in the second scenario, 80% of training data from the SBES points were selected as 

training data, and 20% for the accuracy assessment of the SDB model.  

 

2.4.  Image pre-processing 

2.4.1. Geometric correction 

Before the implementation of the SDB algorithm, geo-referencing was implemented to all 

images. Geo-registration of images (Sentinel-2A and Landsat 8 OLI/TIRS) was conducted using 

geometrically corrected reference image, namely a WorldView-2 image at 2 m spatial resolution. The 

spectral band information for each image is available in Tab. 3. For each image, we created dataset 

consists of four bands in blue, green, red, and near infrared bands (visible plus near infrared/NIR 

bands).  

Table 3. 
The spectral band information of images used in this research. 

Satellite Bands Wavelength (μm) Satellite Bands Wavelength (μm) 

WorldView-2 

Blue 0.45–0.51 

Sentinel 2 

Blue 0.49 

Green 0.51–0.58 Green 0.56 

Red 0.58–0.62 Red 0.66 

Near-IR1 0.63–0.69 SWIR 0.66 

Landsat 8 OLI/TIRS 

Blue 0.45–0.51 

 

  

Green 0.53–0.59   

Red 0.64–0.67   

NIR 0.85–0.88   
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2.4.2. Image correction 

Fig. 2 provides an illustration of spectral reflectance (𝐿𝑠) in shallow water observed by a sensor 

consisting of: atmospheric scattering (λa), reflection of sea surface (𝐿r), in-water scattering (𝐿w), and 

bottom reflection (𝐿𝑏) (Kanno, Koibuchi and Isobe, 2011; Vinayaraj, Raghavan and Masumoto, 

2016). The recorded spectral reflectance (𝐿𝑠) is estimated by a function of wavelength as: 

 

𝐿𝑠 = 𝐿𝑎 + 𝐿𝑟 + 𝐿𝑤 + 𝐿𝑏  (1) 

 

In this study, image correction was performed based on the averaged deep water area (Lyzenga, 

1981; Spitzer and Dirks, 1987; Gholamalifard et al., 2013) for removal of scattering in the atmosphere 

and external reflection from water surface. The methods assumed that in deep water, there is no 

bottom reflectance element in the spectral radiance observed by the sensor. Number of pixels were 

sampled from deep water and their average radiance value (DN) was then subtracted from all pixels 

in every band respectively (Green et al., 2000): 

 

𝐿 = 𝐿𝑖 −  𝐿𝑠𝑖   (2) 

where 𝐿i is the measured reflectance in shallow water for band 𝑖 and 𝐿si is the average reflectance for 

deep water in band 𝑖. 

 

 
 

 

Fig. 2. The visualization of spectral reflectance components recorded by sensor in water area  

(modified from Kanno, 2011). 
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2.4.3. Linearize relationship between depth and pixel reflectance 

In relatively clear water, light intensity will decline exponentially with the increasing depth. In 

this step, the value of light intensity (reflectance) were transformed using natural logarithms (𝑙𝑛). The 

relationship between light intensity and depth becomes linear, and therefore the transformed 

reflectance values decrease linearly with the increasing depth as written as follows (Green et al., 2000; 

Gholamalifard et al., 2013): 

𝑋𝑖 = 𝑙𝑛 (𝐿𝑖 − 𝐿𝑠𝑖) (3) 

where 𝑋i is the transformed reflectance values of a pixel in band 𝑖, 𝐿si is the average reflectance for 

deep water in band 𝑖.  

 

2.5.  Modeling of Bathymetry  

2.5.1. Semi-parametric regression using spatial coordinates (GAM) 

The GAM method is a combination of Lyzenga’s method (Lyzenga, 1978) and spatial 

interpolation method. Kanno (2011) developed the method using semi-parametric regression which 

models the error term in Lyzenga's method based on its spatial dependency. The formula can be 

written as (Kanno, Koibuchi and Isobe, 2011): 

ℎ𝑧 = X𝛿 + 𝑡(𝜑) +  𝜀′ (4) 

where X and 𝛿 are the Lyzenga’s estimators derived from SBES measurements and visible band of 

images. Meanwhile, 𝑡(𝜑) is a smooth nonparametric function of the two-dimensional coordinate 

vector 𝜑 and 𝜀’ is a random variable with a zero mean. When solving the equation, a penalized thin-

plate regression spline was used. It is included in the ‘mgcv' package, specifically the Generalized 

Additive Model (GAM) smoothing function. This package is available in the R programming 

language. In addition, we used the smooth term function ‘s' that was improved using Generalized 

Cross Validation (GCV) and regression ‘splines' with fixed degrees of freedom in this experiment. 

The definition of this degree of freedom, expressed as 𝑘, is a crucial step in adopting the SDB model. 

According to Wood (2017), the value of 𝑘 should be neither too large nor too small. We used different 

𝑘 numbers in this experiment, such as 100, 200, 400, 600, 800, and 1000. The RMSE value produced 

by the model was used to evaluate the results. For further detailed descriptions of this algorithm are 

available in Wood (2017). 

2.5.2. Multiple Linear Regressions (MLR) 

Linear regression models the relationship between dependent and independent variables. If there 

is only one independent variable it is called simple linear regression, while in the case of more than 

one independent variable it is called multiple linear regression (MLR). The relationships are modeled 

by linear functions and the parameter are estimated from the data. Due to its simplicity, MLR has 

been extensively used for predicting bathymetry data in the shallow water area from multi spectral 

bands of satellite imagery (Clark, Fay and Walker, 1987; Hamilton et al., 1993).  

This method assumes that the bottom reflectance and water composition are constant within all 

part of the image (Van Hengel, 1991). Therefore, this method might work since the bottom reflectance 

affects multi spectral bands of the imagery. In the case of predicting bathymetry data from multi 

spectral bands, the dependent variable is the bathymetry depth (𝑊𝑧) while the independent variables 
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are the transformed radiance from multi spectral bands (𝑋𝑛). In order to estimate the parameters of 

MLR, echo sounding surveys were conducted in the area as the dependent variable 𝑊𝑧. Then the 

estimated parameters are used to predict the bathymetry depth from the transformed radiance 

(independent variables). This method is formally described as follow (Van Hengel and Spitzer, 1991): 

 

𝑊𝑧 =  𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑛𝑋𝑛 + 𝜀 (5) 

 

where 𝑊𝑧  is bathymetry depth, 𝛽0 is the intercept, 𝛽1, 𝛽2, …, 𝛽𝑛 are the slopes, 𝑛 is the number of 

spectral bands, and 𝜀 is the error term. MLR works by estimating 𝛽 such that 𝜀 is minimized. 

2.5.3. Support Vector Machine (SVM) 

SVM, as one of machine learning algorithm, can do both classification and regressions. In this 

study, the SVM-based regression was used to model the relation between training data i.e., depth 

measurement data and the transformed reflectance from satellite images. The accuracy of the SVM-

based regression is usually determined by the appropriate selection of kernel and its parameters (Gao, 

2015; Misra et al., 2018). From literature, Gao (2009) suggested that the radial basis function (RBF) 

has a good performance in predicting depth in the Great Lakes. Therefore, in this research, we also 

applied RBF kernel when performing SVM.  

In this study, we determined various values of the smoothing parameter 𝛾, as the parameter of 

RBF kernel, it controls the shape of the “peaks” and defines the inverse of the influence radius of 

sample selected as support vectors. In this case low value of 𝛾 representing ‘far’ influence while high 

values meaning ‘close’ influence. The SVM model has been implemented in R software by using the 

package “e1071”. For this experiment, we set various 𝜆 values (equal to 0.01, 0.1, 1, 10, and 100) and 

a standard 𝑐𝑜𝑠𝑡 parameter of SVM. 

2.5.4. Random Forest (RF)  

RF, like SVM, is one of machine learning algorithm that can do both classification and 

regressions (Breiman, 2001). In this research, the RF regression model was used to model the 

relationship between the water depth data from echo sounding measurement (response variable) and 

transformed reflectance data from images (predictor variable) (McLaren, McIntyre and Prospere, 

2019; Sagawa et al., 2019). The RF model works by creating a random sample from our training data 

with a similar distribution for all trees and estimating depth based on these tree correlations. 

For this study, we used “random Forest” package in R environment. We set a various value for 

𝑛𝑡𝑟𝑒𝑒 parameter for i.e., 100, 300, 500, 700 and 1000 that represent number of trees to grow for the 

decision tree estimates. Meanwhile, we keep default values for the other hyperparameters, such as 

𝑚𝑡𝑟𝑦 (number of variables randomly sampled as candidates at each split), 𝑠𝑎𝑚𝑝𝑠𝑖𝑧𝑒 (size of sample 

to draw), 𝑛𝑜𝑑𝑒𝑠𝑖𝑧𝑒 (minimum size of terminal nodes), 𝑚𝑎𝑥𝑛𝑜𝑑𝑒𝑠 (maximum number of terminal 

nodes trees in the forest can have). 

 

2.6.  Accuracy Assessment of the SDB models 

The SDB models were evaluated by estimating the Root Mean Square Error (RMSE) shown in 

Equation 6. For the accuracy assessment purposes, we used SBES points as testing data based on 

different scenarios that have been set.  
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𝑅𝑀𝑆𝐸 = ∑ √
(𝑍𝑖 − 𝑍𝑖

′)2

N
 (6) 

where 𝑍𝑖 is the actual depth value from in-situ measurement data, 𝑍𝑖
′ is the expected value of SDB, 

and 𝑁 is the number of elements in the data.  

3. RESULTS AND DISCUSSIONS 

3.1. Generalized adaptive model 

Obviously, applying various 𝑘 values only slightly changed the RMSE values (see Fig. 3 and 

Tab. 4) both by using 20% and 80% of training data from the SBES measurement points. When using 

20% training data, the RMSE values ranged from 2.60 – 2.65 m with 𝑅2 ranged from 0.88 – 0.89 for 

Landsat 8 OLI/TIRS, 2.44 – 2.46 m with 𝑅2 ranged from 0.893 – 0.894 for Sentinel 2A, and 1.11 – 

1.80 m with 𝑅2 ranged from 0.94 – 0.98 for WorldView 2. Meanwhile when increasing the number 

of training data into 80%, the RMSE values were from 2.60 – 2.65 m with 𝑅2 ranged from 0.878 – 

0.884 for Landsat 8 OLI/TIRS, 2.44 – 2.45 m with 𝑅2 ranged from 0.889 – 0.89 for Sentinel 2A, and 

1.05 – 1.76 m with 𝑅2 ranged from 0.94 – 0.98 for WorldView 2. In general, the increasing training 

data ratios only produced little differences in accuracies of the SDB model. Moreover, by using 

Landsat OLI/TIRS, the increasing training data caused the decreasing of accuracy of the model 

showing by the decreasing of the 𝑅2 value.  

From both results in Fig. 3, we can also see that setting higher 𝑘 did not always provide a better 

accuracy. Moreover, higher 𝑘 required a longer processing time to execute the models. The highest 

accuracy values when using Landsat 8 OLI/TIRS and Sentinel 2A were obtained when setting 𝑘 =
200 while when using WorldView 2, 𝑘 = 1000 provided the best accuracy.   

The visualization of those models is available in Fig. 4. The SDB models resulted from Landsat 

8 and Sentinel 2A were clearly over smoothing comparing to the model resulted from WorldView 2. 

The experiments revealed that we cannot rely solely on the RMSE values of the predicted result, but 

it is critical to check the SDB models visually. The experiment concluded that the SDB model by 

using GAM may be more suitable to be applied for higher resolution image such as WorldView 2 

which has 2 m spatial resolution which was supported by the lowest RMSE value obtained (1.054 m).   

 

 
 

Fig. 3. The RMSE and 𝑅2 values when applying GAM with training data ratio 20% (left) and 80% (right). 

Dashed-lines show the coefficient correlation values 𝑅2 while solid lines represent RMSE values. Four bands 

were used by comparing three images from three sensors, namely WV2=Worldview-2, S2A=Sentinel 2A, and 

LC8=Landsat 8 OLI/TIRS. 
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                                                                                                                                        Table 4. 
The results of accuracy assessment of the SDB model using GAM. 

Datasets 𝑹𝟐 and RMSE (m) 
𝑘 

100 200 400 600 800 1000 

a) Training ratio: 20% 

LC8 
𝑅2 0.88 0.89 0.88 0.88 0.88 0.88 

RMSE 2.64 2.60 2.65 2.65 2.65 2.65 

S2A 
𝑅2 0.89 0.89 0.89 0.89 0.89 0.89 

RMSE 2.46 2.44 2.46 2.46 2.46 2.46 

WV2 
𝑅2 0.94 0.95 0.97 0.97 0.98 0.98 

RMSE 1.80 1.59 1.34 1.22 1.15 1.11 

b) Training ratio: 80% 

LC8 
𝑅2 0.88 0.88 0.88 0.88 0.88 0.88 

RMSE 2.65 2.60 2.65 2.65 2.65 2.65 

S2A 
𝑅2 0.89 0.89 0.89 0.89 0.89 0.89 

RMSE 2.45 2.44 2.45 2.45 2.45 2.45 

WV2 
𝑅2 0.94 0.96 0.97 0.97 0.98 0.98 

RMSE 1.76 1.52 1.30 1.19 1.11 1.05 

 

 
 

Fig. 4. The visualization of SDB model when applying GAM for: (a) Landsat 8 OLI/TIRS (𝑘 = 200); (b) 

Sentinel 2A (𝑘 = 200); and (c) WorldView 2 (𝑘 = 1000) images. WorldView 2 presents the best visualization 

of the results with higher 𝑘 produced less noisy results. Black pixels represent land area while white pixels 

indicated no data. For image notations, see the caption of Fig. 3.  

    

3.2. Support Vector Machine results interpretation 

Setting two training ratios when applying SVM greatly influenced the SDB models as can be 

seen in Fig. 5 and Tab. 5. When using 20% training data, the RMSE values ranged from 1.59 – 2.96 

m with 𝑅2 ranged from 0.86 – 0.96 for Landsat 8 OLI/TIRS, 1.56 – 4.47 m with 𝑅2 ranged from 0.63 
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– 0.96 for Sentinel 2A, and 1.56 – 5.47 m with 𝑅2 ranged from 0.52 – 0.96 for WorldView 2. 

Meanwhile when increasing the number of training data into 80%, the RMSE values were from 1.15 

– 2.88 m with 𝑅2 ranged from 0.86 – 0.98 for Landsat 8 OLI/TIRS, 1.09 – 2.31 m with 𝑅2 ranged 

from 0.91 – 0.98 for Sentinel 2A, and 1.470 – 3.80 m with 𝑅2 ranged from 0.77 – 0.96 for WorldView 

2. Setting higher proportion of training data resulted in better accuracies of the SDB model. The 

increasing training data ratios produced large differences in accuracies of the SDB model implying 

that the SVM was highly dependent on the amount of training data. It is critical to have a large amount 

of training data. The accuracies of the SDB model obtained in this study, especially when using 

Sentinel 2A, was worse than the accuracies obtained by the previous study by Mateo-Perez et al.,  

(2020) that was able to achieve RMSE values of 0.3-0.4 m. Meanwhile, Misra et al., (2018) by using 

Landsat image obtained RMSE values of 2.88 m which was quite similar with our results. 

 

 
 

Fig. 5. The RMSE and 𝑅2 values when applying SVM with training data ratio 20% (left) and 80% (right). 

For image notations, see the caption of Fig. 3. 

Table 5. 
The results of accuracy assessment of the SDB model using SVM 

Datasets 
𝑹𝟐 and 

RMSE (m) 

𝝀 

0.001 0.01 0.1 0.25 0.5 1 10 100 1000 

a) Training ratio: 20% 

LC8 
𝑅2 0.86 0.89 0.91 0.92 0.92 0.92 0.94 0.96 0.93 

RMSE 2.96 2.66 2.40 2.32 2.28 2.23 1.98 1.59 2.01 

S2A 
𝑅2 0.87 0.93 0.94 0.95 0.95 0.95 0.96 0.91 0.63 

RMSE 2.85 1.99 1.75 1.70 1.67 1.64 1.56 2.18 4.47 

WV2 
𝑅2 0.86 0.92 0.95 0.95 0.95 0.95 0.96 0.92 0.52 

RMSE 3.25 2.14 1.70 1.66 1.64 1.60 1.56 2.15 5.47 

b) Training ratio: 80%         

LC8 
𝑅2 0.86 0.89 0.91 0.92 0.92 0.92 0.94 0.98 0.98 

RMSE 2.88 2.63 2.44 2.36 2.31 2.25 1.89 1.26 1.15 

S2A 
𝑅2 0.91 0.93 0.95 0.95 0.95 0.95 0.96 0.98 0.97 

RMSE 2.31 1.90 1.71 1.66 1.64 1.61 1.42 1.09 1.41 

WV2 
𝑅2 0.89 0.94 0.95 0.95 0.95 0.96 0.96 0.95 0.77 

RMSE 2.63 1.89 1.64 1.61 1.57 1.53 1.47 1.61 3.80 
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Applying various 𝛾 values contributed to changing in the RMSE of the SDB models (see Fig. 5) 

both by using 20% and 80% of training data from the SBES measurement points. From both results 

in Fig. 5, in general, by using Landsat 8 OLI/TIRS, Sentinel 2A and WorldView 2, a lower RMSE 

value was obtained by increasing 𝛾. When setting 20% training data, the best models were achieved 

with values of 𝛾 equal to 100 and 10 for Landsat OLI/TIRS, and both Sentinel 2A and WorldView, 

respectively. Meanwhile, by setting training data into 80%, the best SDB models were resulted from 

𝛾 values equal to 1000, 100 and 10 for Landsat OLI/TIRS, Sentinel 2A and WorldView, respectively. 

The visualization of those models is available in Fig. 6. The SDB model from Landsat 8 OLI/TIRS 

was clearly noisy while SDB models from Sentinel 2A and WorldView 2 depict a much more 

representative depth distribution, especially in shallow water area.  

     

 

 
 

Fig. 6. The visualization of the best SDB model when applying SVM for: (a) Landsat 8 OLI/TIRS (𝛾 =
1000); (b) Sentinel 2A (𝛾 = 100); and (c) WorldView 2 (𝛾 = 10) images. Black pixels represent land area 

while white pixels indicated no data. For image notations, see the caption of Fig. 3.  

 

3.3. Multi Linear Regression results interpretation 

Applying MLR with various training ratios had little influence on the SDB results. Moreover, 

increasing training data from 20% to 80% reduced the quality of the SDB model showed by the 

increase of the RMSE values, except when using WorldView 2. By using WorldView, there was a 

little decrease of the RMSE from 2.626 to 2.608 m (see Tab. 6).  

WorldView-2 with 80% training data produced the best accuracy with 𝑅2 equal to 0.871 and 

RMSE value equal to 2.608. SDB model using Landsat 8 OLI/TIRS outperformed WorldView 2 with 

RMSE equal to 2.431 and 2.442 m with 𝑅2 equal to 0.888 and 0.886 for 20% and 80% training data, 

respectively. For this case, a higher image resolution did not result in a better SDB model in terms of 

RMSE values. When we compared the results obtained from this study with other previous studies, 

for example when using WorldView 2 datasets, Jawak and Luis (2015) could obtained higher 

accuracy with RMSE value of 0.21 m. However, in their study, 8 bands of WorldView 2 were included 

for the implementation of SDB model. In this case, the number and type of bands that were used may 

have influenced the model accuracy (Manessa et al., 2016). 
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                                                                                                                             Table 6. 

The validation results obtained by comparing predicted and observed value of depths.  

Asterisk notifies the lowest RMSE value. 

  

 

 
Fig. 7 presents the comparisons of the SDB models resulted from MLR applied using three 

different images showing that MLR were able to represent depth distribution consistently. The 

variation of training data and the spatial resolution of images did not produce large influences on the 

predicted SDB results as when using GAM method.  

 

 
 

Fig. 7. The visualization of SDB model when applying MLR with 80% of training data for: (a) Landsat 8 

OLI/TIRS; (b) Sentinel 2A; and (c) WorldView 2 images. Black pixels represent land area while white pixels 

indicated no data. For image notations, see the caption of Fig. 3. 

3.4. Random Forest results interpretation 

As SVM, setting two training ratios when applying RF also largely influenced the SDB models 

as can be seen in Fig. 8 and Tab. 7. When using 20% training data, the RMSE values ranged from 

1.097 – 1.099 m with 𝑅2 equal to 0.981 for Landsat 8 OLI/TIRS, 1.265 – 1.272 m with 𝑅2 equal to 

0.973 for Sentinel 2A, and 1.442 – 1.456 m with 𝑅2 equal to 0.960 for WorldView 2. Meanwhile 

when increasing the number of training data into 80%, the RMSE values were 0.934 m with 𝑅2 equal 

to 0.987 for Landsat 8 OLI/TIRS, 0.667 – 0.670 m with 𝑅2 equal to 0.993 for Sentinel 2A, and 1.204 

– 1.210 m with 𝑅2 equal to 0.972 for WorldView 2. Setting higher proportion of training data resulted 

in better accuracies of the SDB model. The increasing training data ratios produced large differences 

in accuracies of the SDB model especially for Landsat OLI/TIRS and Sentinel 2A. It was implying 

that the RF was highly dependent on the amount of training data like SVM and having large amount 

of training data was important as has been suggested by Sagawa et al., (Sagawa et al., 2019).  

 

 

Datasets Training Ratio 𝑹𝟐 RMSE (m) 

LC8 
20% 0.888 2.431* 

80% 0.886 2.442 

S2A 
20% 0.858 2.893 

80% 0.853 2.934 

WV2 
20% 0.869 2.626 

80% 0.871 2.608 
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Fig. 8 shows little variation of RMSE values when applying RF by varying the 𝑛𝑡𝑟𝑒𝑒 values both 

by using variation in training set ratio. It was implying that variation of 𝑛𝑡𝑟𝑒𝑒 has little influence on 

the prediction results. Moreover, applying larger 𝑛𝑡𝑟𝑒𝑒 values corresponded to the longer time needed 

for the SDB model.  

The visualization of RF models is available in Fig. 9. The SDB model from Landsat 8 OLI/TIRS 

was a little bit noisy while SDB models from Sentinel 2A and WorldView 2 depict a much more 

representative depth distribution, especially in shallow water area. Similarly, with MLR method, a 

higher image resolution did not result in a better SDB model in terms of RMSE values. 

 

                                                                                                                                            Table 7. 
The results of accuracy assessment of the SDB model using RF. 

Datasets  
𝑹𝟐 and 

RMSE (m) 

𝒏𝒕𝒓𝒆𝒆 

100 300 500 700 1000 

a) Training ratio: 20% 

LC8 
𝑅2 0.98 0.98 0.98 0.98 0.98 

RMSE 1.10 1.10 1.10 1.10 1.10 

S2A 
𝑅2 0.97 0.97 0.97 0.97 0.97 

RMSE 1.27 1.27 1.27 1.27 1.27 

WV2 
𝑅2 0.96 0.96 0.96 0.96 0.96 

RMSE 1.46 1.44 1.44 1.44 1.44 

 b) Training ratio: 80% 

LC8 
𝑅2 0.99 0.99 0.99 0.99 0.99 

RMSE 0.93 0.93 0.93 0.93 0.93 

S2A 
𝑅2 0.99 0.99 0.99 0.99 0.99 

RMSE 0.67 0.67 0.67 0.67 0.67 

WV2 
𝑅2 0.97 0.97 0.97 0.97 0.97 

RMSE 1.21 1.21 1.21 1.20 1.20 

 

 
(a) (b) 

 

Fig. 8. The RMSE and 𝑅2 values when applying RF with training data ratio 20% (a) and 80% (b). For 

image notations, see the caption of Fig. 3. 
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Fig. 9. The visualization of SDB model when applying RF with 80% of training data and 𝑛𝑡𝑟𝑒𝑒 = 500 

for: (a) Landsat 8 OLI/TIRS; (b) Sentinel 2A; and (c) WorldView 2 images. Black pixels represent land area 

while white pixels indicated no data. For image notations, see the caption of Fig. 3. 

3.5. Comparison of the Models 

A comparison of bathymetric profiles of the four SDB models with combination of multibeam 

and single-beam measurement data by using three different images is provided in Fig. 10 - 12. By 

using Worldview 2 images (see Fig. 10), SDB model from RF had the best fit with the measurement 

data which was supported by higher accuracies of RF model approximately 1 m (see Fig. 8b). In 

shallow water area of less than 5 m, all the SDB models were also in a good agreement with the 

measurement data. However, in deeper area from 5-10 m, MLR significantly overestimate the water 

depth (see Fig. 8c and Fig.  9c for e. g. gridlines B3, C1 and C2). This was supported by low accuracies 

given by MLR approximately 2.6 m (see Tab. 5). This result was in line with the previous study 

conducted by Manessa et al., (2016) that RF performed better compared to the MLR. 

 

  
Fig. 10. Transect showing a comparison between the four SDB models and measurement data developed 

by using WorldView 2. The transects starts from point A to point B.   

 

Fig. 11 presents bathymetry profile of four SDB models by using Sentinel 2A showing that all 

SDB models except GAM were in a good agreement in shallow water area less than 5 m. GAM model 

provided a flattened curve shifting away from the other models. Fig. 4b shows that large portion of 

shallow water was predicted as land area (see black pixels). From the profile in Fig. 11, RF model 

obviously had the best fit with the measurement data supported by higher accuracies of RF model 

approximately 0.67 m (see Fig. 8b). Meanwhile, SVM and MLR made errors by producing deeper 

depth prediction between 5-15 m.    
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Fig. 11. Transect showing a comparison between the four SDB models and measurement data developed 

by using Sentinel 2A. The transects starts from point A to point B.  
  

Bathymetric profiles when using Landsat OLI/TIRS image are available in Fig. 12. SDB model 

from RF and MLR fit quite well with the measurement data. It was supported by higher accuracies of 

RF model approximately 1 m (see Fig. 8) and 2.4 m for MLR (see Tab. 4). Meanwhile, the bathymetry 

profiles of SDB model from SVM fluctuated irregularly. GAM model provided a flattened curve 

shifting away from the other models.   

 
 

Fig. 12. Transect showing SDB models derived from Sentinel 2A when applying GAM (green), SVM 

(yellow), MLR (blue) compared to 2018 survey. 

 

 
Fig. 13.  Accuracy comparisons of the SDB models used by using Landsat OLI/TIRS, Sentinel 2A and 

WorldView 2. 

 

Fig. 13 shows the performance of each SDB model by using three different images. RF shows 

consistencies of the best performance. Meanwhile GAM method provided the best accuracy only 

when using WorldView 2. MLR method provided the largest RMSE errors implying of the most 

inaccurate model. 
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4. CONCLUSIONS 

In this paper, we compared four methods for satellite derived bathymetry by using three different 

image resolutions. We also checked the influence of training and testing ratio to the models. In 

general, by increasing the number of training data, the SDB models obtained higher accuracies. 

However, when using MLR algorithm with Sentinel 2A and Landsat 8 OLI/TIRS images, increasing 

the number of training data led to a slight decrease of the accuracies.  

Among the four algorithms, SVM and RF were highly influenced by the number of training data 

used. As also has been mentioned by Sagawa et al., (Sagawa et al., 2019) that a large amount of 

training data is important for the implementation of machine learning-based SDB algorithm. Not only 

the amount of the training data but also their coverage is critical. SVM and RF perform poorly when 

extrapolating beyond the range of the training data set. So it is important to have a slightly wider 

depth area (Geyman and Maloof, 2019; Sagawa et al., 2019) for the training dataset. 

All three satellite imageries provided meaningful results to assess SDB accuracy at various spatial 

and spectral resolution. However, in this research, the use of high-resolution imagery did not always 

improve accuracy, for example when using SVM. The accuracy of SVM model by using Landsat 8 

OLI/TIRS image was better than the accuracy of SVM model when using Sentinel 2A and World 

View 2. In addition, when using RF, Sentinel 2A produced the best accuracy. However, when using 

GAM model, the most feasible result was generated only by using World View 2 image. In all cases, 

RF performed well and provided the most accurate SDB prediction.   

 

ACKNOWLEDGEMENTS 

The authors would like to thank our colleagues from the Center for Marine and Coastal 

Environment Mapping of the Geospatial Information Agency for providing data, insight and expert 

inputs that greatly assisted this research. This research was jointly funded by the Indonesia Geospatial 

Information Agency and the Ministry of Research and Technology/National Agency for Research and 

Innovation of Indonesia, via Research Incentive Program of National Innovation System 2021, 

Research Incentive Implementation Contract Ref. 1/INS/PPK/E4/2021. 
 

  R E F E R E N C E S  
 

Bramante, J. F., Raju, D. K. and Sin, T. M. (2013) ‘Multispectral derivation of bathymetry in Singapore’s 

shallow, turbid waters’, International Journal of Remote Sensing, 34(6), pp. 2070–2088. doi: 

10.1080/01431161.2012.734934. 

Brando, V. E. et al. (2009) ‘A physics based retrieval and quality assessment of bathymetry from suboptimal 

hyperspectral data’, Remote Sensing of Environment, 113(4), pp. 755–770. doi: 

10.1016/j.rse.2008.12.003. 

Breiman, L. (2001) ‘Random Forests’, Machine Learning, 45(1), pp. 5–32. doi: 10.1023/A:1010933404324. 

Cahalane, C. et al. (2019) ‘A comparison of Landsat 8, RapidEye and Pleiades products for improving empirical 

predictions of satellite-derived bathymetry’, Remote Sensing of Environment, 233(111414), p. 15. doi: 

10.1016/j.rse.2019.111414. 

Chénier, R., Faucher, M.-A. and Ahola, R. (2018) ‘Satellite-Derived Bathymetry for Improving Canadian 

Hydrographic Service Charts’, ISPRS International Journal of Geo-Information, 7(8), p. 306. doi: 

10.3390/ijgi7080306. 

Chybicki, A. (2018) ‘Three-Dimensional Geographically Weighted Inverse Regression (3GWR) Model for 

Satellite Derived Bathymetry Using Sentinel-2 Observations’, Marine Geodesy, 41(1), pp. 1–23. doi: 

10.1080/01490419.2017.1373173. 

Clark, R. K., Fay, T. H. and Walker, C. L. (1987) ‘Bathymetry calculations with Landsat 4 TM imagery under 

a generalized ratio assumption’, Applied Optics, 26(19), pp. 4036_1-4038. doi: 10.1364/AO.26.4036_1. 



196 

 

DigitalGlobe (2013) Base Product Series FAQ. 

ESA (2015) ‘SENTINEL-2 User Handbook’, Sentinel-2 User Handbook. 

ESA et al. (2018) ‘Sentinel-2 Products Specification Document’, Thales Alenia Space. 

Gao, J. (2009) ‘Bathymetric mapping by means of remote sensing: methods, accuracy and limitations’, 

Progress in Physical Geography: Earth and Environment, 33(1), pp. 103–116. doi: 

10.1177/0309133309105657. 

Gao, S. (2015) Shallow Water Depth Inversion Based on Data Mining Models. Louisiana State University and 

Agricultural and Mechanical College. Available at: https://digitalcommons.lsu.edu/gradschool_theses/220. 

Geyman, E. C. and Maloof, A. C. (2019) ‘A Simple Method for Extracting Water Depth From Multispectral 

Satellite Imagery in Regions of Variable Bottom Type’, Earth and Space Science. doi: 

10.1029/2018EA000539. 

Gholamalifard, M. et al. (2013) ‘Bathymetric modeling from satellite imagery via Single Band Algorithm 

(SBA) and Principal Components Analysis (PCA) in Southern Caspian Sea’, International Journal of 

Environmental Research, 7(4), pp. 877–886. 

Green, E. P. et al. (2000) Remote Sensing Handbook for Tropical Coastal Management, Coastal Management 

Sourcebooks 3. 

Hamilton, M. K. et al. (1993) ‘Estimating chlorophyll content and bathymetry of Lake Tahoe using AVIRIS 

data’, Remote Sensing of Environment, 44(2–3), pp. 217–230. 

Hartmann, K., Wettle, M. and Heege, T. (2017) ‘The Increasing Importance of Satellite-derived Bathymetry’

, GIM International. Available at: https://www.gim-international.com/content/article/the-increasing-

importance-of-satellite-derived-bathymetry#:~:text=Bathymetric data in the shallow,zone management or 

hydrodynamic modelling. 

Van Hengel, W. and Spitzer, D. (1991) ‘Multi-temporal water depth mapping by means of Landsat TM’, 

International Journal of Remote Sensing, 12(4), pp. 703–712. 

Ismail, M. R. (2007) Small Islands in North Halmahera Regency (Overview of the Management of Skipjack 

Fishery Resources), Thesis. Sekolah Pascasarjana IPB (Bogor Agricultural University). Available at: 

https://adoc.pub/kajian-pengembangan-wilayah-pulau-pulau-kecil-di-kabupaten-h.html. 

Jawak, S. D. and Luis, A. J. (2015) ‘Spectral information analysis for the semiautomatic derivation of shallow 

lake bathymetry using high-resolution multispectral imagery : A case study of Antarctic coastal oasis’, 

Aquatic Procedia, 4(Icwrcoe), pp. 1331–1338. doi: 10.1016/j.aqpro.2015.02.173. 

Kanno, A. et al. (2013) ‘Generalized Lyzenga’s Predictor of Shallow Water Depth for Multispectral Satellite 

Imagery’, Marine Geodesy, 36(4), pp. 365–376. doi: 10.1080/01490419.2013.839974. 

Kanno, A., Koibuchi, Y. and Isobe, M. (2011) ‘Shallow Water Bathymetry from Multispectral Satellite Images: 

Extensions of Lyzenga’s Method for Improving Accuracy’, Coastal Engineering Journal, 53(4), pp. 

431–450. doi: 10.1142/S0578563411002410. 

Kumari, P. and Ramesh, H. (2020) ‘Remote sensing image based nearshore bathymetry extraction of 

Mangaluru coast for planning coastal reservoir’, in Sitharam, T. G. et al. (eds) Sustainable Water 

Resource Development Using Coastal Reservoirs. Oxford: Butterworth-Heinemann, pp. 247–265. doi: 

https://doi.org/10.1016/B978-0-12-818002-0.00013-7. 

Lyzenga, D. R. (1978) ‘Passive remote sensing techniques for mapping water depth and bottom features’, 

Applied Optics, 17(3), pp. 379–383. doi: 10.1364/AO.17.000379. 

Lyzenga, D. R. (1981) ‘Remote sensing of bottom reflectance and water attenuation parameters in shallow 

water using aircraft and Landsat data ( Bahamas).’, International Journal of Remote Sensing, 2(1), pp. 

71–82. 

Manessa, M. D. M. et al. (2016) ‘Satellite-Derived Bathymetry using Random Forest Algorithm and 

Worldview-2 Imagery’, Geoplanning: Journal of Geomatics and Planning; Vol 3, No 2 (2016): (October 

2016)DO - 10.14710/geoplanning.3.2.117-126. Available at: 



Ratna Sari DEWI, Aldino RIZALDY, Prayudha HARTANTO and Suprajaka SUPRAJAKA / ASSESSING … 197 

 

https://ejournal.undip.ac.id/index.php/geoplanning/article/view/12047. 

Mateo-Pérez, V. et al. (2020) ‘Port bathymetry mapping using support vector machine technique and sentinel-

2 satellite imagery’, Remote Sensing. doi: 10.3390/rs12132069. 

McLaren, K., McIntyre, K. and Prospere, K. (2019) ‘Using the random forest algorithm to integrate 

hydroacoustic data with satellite images to improve the mapping of shallow nearshore benthic features in 

a marine protected area in Jamaica’, https://doi.org/10.1080/15481603.2019.1613803, 56(7), pp. 1065–

1092. doi: 10.1080/15481603.2019.1613803. 

Misra, A. et al. (2018) ‘Shallow water bathymetry mapping using Support Vector Machine (SVM) technique 

and multispectral imagery’, International Journal of Remote Sensing, 39(13), pp. 4431–4450. doi: 

10.1080/01431161.2017.1421796. 

Pacheco, A. et al. (2015) ‘Retrieval of nearshore bathymetry from Landsat 8 images: A tool for coastal 

monitoring in shallow waters’, Remote Sensing of Environment, 159, pp. 102–116. doi: 

10.1016/j.rse.2014.12.004. 

Pattanaik, A., Sahu, K. and Bhutiyani, M. R. (2015) ‘Estimation of Shallow Water Bathymetry Using IRS-

Multispectral Imagery of Odisha Coast, India’, Aquatic Procedia, 4, pp. 173–181. doi: 

https://doi.org/10.1016/j.aqpro.2015.02.024. 

Philpot, W. D. (1989) ‘Bathymetric mapping with passive multispectral imagery’, Applied Optics, 28(8), pp. 

1569–1578. doi: 10.1364/AO.28.001569. 

S. Halim, H. (2017) ‘Gazing Coastal Ecotourism in Morotai Islands, Indonesia’, Environmental Management 

and Sustainable Development. doi: 10.5296/emsd.v6i2.11393. 

Sagawa, T. et al. (2019) ‘Satellite derived bathymetry using machine learning and multi-temporal satellite 

images’, Remote Sensing. doi: 10.3390/rs11101155. 

Siermann, J. et al. (2014) ‘Satellite derived Bathymetry and Digital Elevation Models (DEM)’, International 

Petroleum Technology Conference. doi: 10.2523/IPTC-17346-MS. 

Spitzer, D. and Dirks, R. W. J. (1987) ‘Bottom influence on the reflectance of the sea.’, International Journal 

of Remote Sensing, 8(3), pp. 279–290. 

Stumpf, R. P., Holderied, K. and Sinclair, M. (2003) ‘Determination of water depth with high-resolution 

satellite imagery over variable bottom types’, Limnology and Oceanography, 48(1part2), pp. 547–556. 

doi: 10.4319/lo.2003.48.1_part_2.0547. 

Traganos, D. et al. (2018) ‘Estimating satellite-derived bathymetry (SDB) with the Google Earth Engine and 

sentinel-2’, Remote Sensing. doi: 10.3390/rs10060859. 

USGS (2015) ‘Landsat 8 (L8) Data Users Handbook’, Earth Resources Observation and Science (EROS) 

Center. 

USGS (2019) ‘EarthExplorer - Home’, U.S. Geological Survey. 

Vinayaraj, P. (2017) ‘Development of Algorithms for Near-shore Satellite Derived Bathymetry Using 

Multispectral Remote Sensing Images’, p. 1. 

Vinayaraj, P., Raghavan, V. and Masumoto, S. (2016) ‘Satellite-Derived Bathymetry using Adaptive 

Geographically Weighted Regression Model’, Marine Geodesy, 39(6), pp. 458–478. doi: 

10.1080/01490419.2016.1245227. 

Wijaya, S. W. et al. (2012) Pulau Morotai: Sumberdaya Strategis di Kawasan Timur Indonesia. 

Wood, S. N. (2017) Generalized additive models: An introduction with R, second edition, Generalized Additive 

Models: An Introduction with R, Second Edition. doi: 10.1201/9781315370279. 

Zhang, K. et al. (2021) ‘Improving Statistical Uncertainty Estimate of Satellite-Derived Bathymetry by 

Accounting for Depth-Dependent Uncertainty’, IEEE Transactions on Geoscience and Remote Sensing, 

pp. 1–9. doi: 10.1109/TGRS.2021.3069868. 

 


