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ABSTRACT: 

The identification of land cover and land use is necessary to support the strategic management of 

coastal areas. The utilization of remote sensing technology such as synthetic aperture radar (SAR) data 

has been widely used for mapping the distribution of land cover and land use. This application includes 

the detection of aquaculture ponds in coastal areas due to SAR’s sensitivity to surface water content. 

In addition, multitemporal Sentinel-1 data helps to distinguish between ponds and rice fields that 

possess a visually similar appearance during the flooding stage. This study aims to explore the accuracy 

of the gray level of co-occurrence model (GCLM) textures of multitemporal Sentinel-1 data for 

aquaculture pond mapping in Brebes Regency, Central Java Province, Indonesia. In addition, single-

date Sentinel-2 optical imagery was used to compare the results from Sentinel-1 data. The Sentinel-2 

data has been identified using supervised classifications, e.g., maximum likelihood (ML), minimum 

distance (MD), random forest (RF), and K-nearest neighbor (KNN) algorithms, and the most accurate 

algorithm was selected to classify the Sentinel-1 data using GLCM textures. The results indicated that 

the Sentinel-1 imagery showed the best results using GLCM metrics from VH polarization with an 

accuracy value of 92.2% using the ML algorithm, while the best results from Sentinel-2 were also 

produced using ML, with an 88.4% overall accuracy. These results demonstrate that multitemporal 

Sentinel-1 data have higher accuracy than Sentinel-2 data when used for pond detection. This shows 

the potential of the combination of both sensors to increase the accuracy of aquaculture pond mapping. 
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1. INTRODUCTION 

Indonesia is an archipelago consisting of approximately 17,504 large and small islands, having 

the longest coastline in the world with a length of 104,000 km (Lasabuda, 2013). The massive coastal 

areas of the islands in Indonesia are suitable for the development of brackish water aquaculture. 

Brackish water aquaculture, as one of the supporting factors for the economy of coastal communities, 

has triggered the expansion of new ponds, which will continue to occur to fulfill the surrounding 

community's needs (Joffre et al., 2019; Ottinger et al., 2016; Porporato et al., 2020). It is necessary to 

monitor the sustainability of the aquaculture ponds and formulate management strategies in coastal 

areas to support coastal environmental conditions. For sustainable coastal area management, 

understanding pond distribution is the first step in determining the strategies that need to be 

implemented. It is essential to understand that direct data collection and monitoring of ponds 

individually will be a lengthy and expensive process due to the vast area of the ponds (Gusmawati et 

al., 2016a; Gusmawati et al., 2016b). Therefore, technology is needed to assist in pond monitoring 

(Duan et al., 2020; Ottinger et al., 2016). 

Synthetic aperture radar (SAR) satellite observation is part of the remote sensing active system 

that can provide observations day and night and at various weather conditions due to its ability to 
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penetrate clouds. One of the satellites that use SAR technology is Sentinel-1. The Sentinel-1 satellite 

provides SAR imagery free of charge and covers the whole world with a high temporal and spatial 

resolution (Obida et al., 2019). The Sentinel-1 mission employed C-band with dual-polarization 

capabilities using the combination of vertical transmittance, vertical or horizontal returns (VV and 

VH, respectively), short revisit times, and fast product delivery for global observation using the 

constellation of two satellites (Sentinel-1A and Sentinel-1B) orbiting the poles (European Space 

Agency, 2013). Several studies have been conducted using solely multitemporal radar data or using 

radar and optical imagery in combination for aquaculture pond mapping, such as the utilization of 

multitemporal Sentinel-1 radar images and Landsat optical images for mapping aquaculture 

characteristics (Stiller et al., 2019), aquaculture pond identification based on Google Earth Engine’s 

use of Sentinel-1 and Sentinel-2 images (Xia et al., 2020), aquaculture pond identification using the 

object-based image analysis (OBIA) and normalized difference water index (NDWI) methods in 

Taiwan, and using multitemporal Sentinel-1 radar data for pond mapping (Chen et al., 2018; Ottinger 

et al., 2017). Sentinel-1 data also has a significant ability to distinguish flooded land cover, such as a 

paddy field in the inundation phase, by utilizing cross-polarization data from Sentinel-1, although 

misclassification can still occur, especially regarding land cover that possesses similar characteristics 

with the flooded paddy field (Arjasakusuma et al., 2020). However, the textural information from 

Sentinel-1 has not been fully explored, especially for mapping applications. 

Sentinel-1 data has been widely utilized for aquaculture pond identification, but the assessment 

of textural information from Sentinel-1, the gray level of co-occurrence metrics (GLCM) textures, 

has not been studied to identify aquaculture ponds. In this study, the mapping capability using GLCM 

for aquaculture pond identification as an input dataset was tested and compared with the ability of 

Sentinel-2 optical imagery for aquaculture pond mapping.  

 

 
Fig. 1. Study area in the coastal area of Brebes Regency, Central Java Province. 

2. STUDY AREA  

The study area was located in Brebes Regency, Central Java Province, Indonesia. Brebes 

Regency is located between 6°44'- 7°21' S and 108°41'- 109°11' E (Fig. 1). The northern part 

of the study area is adjacent to the Java Sea, the eastern part is adjacent to the Tegal City and Tegal 

Regency, the southern part is adjacent to the Banyumas Regency, and the western part is adjacent to 
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the West Java Province. Brebes Regency consists of 17 Districts, five of which (Losari, Tanjung, 

Bulakamba, Wanasari, and Brebes) are directly adjacent to the sea, and approximately 19.92% to 

42.01% of the area is used for aquaculture ponds, with the Brebes district having the largest area of 

aquaculture ponds (Table 1). 

Table 1.  

Total Area of Ponds in the Coastal Area of Brebes Regency. 

District District Area (Ha) Ponds Area (Ha) Percentage (%) 

Losari 9179 2602 28.35 

Tanjung 7209 2555 35.44 

Bulakamba 12036 2215 18.40 

Wanasari 7534 1501 19.92 

Brebes 9223 3875 42.01 

Source: (BPS-Statistics of Brebes Regency, 2020). 

3. DATA AND METHODS 

3.1. Sentinel-1 Data 

This study used 12 Sentinel-1A, dual-polarization (VV and VH) images in interferometric wide-

swath mode (IW-SM) and ground range detected high resolution (GRDH) format with a 10-meter 

spatial resolution in descending orbit with a period from September 2019 to August 2020. More 

details regarding the Sentinel-1 images used in this analysis are presented in Appendix 1 and 

Appendix 2.  

Preprocessing was completed using the SNAP Sentinel-1 ToolBox application by following the 

steps suggested by Filipponi (2019). During processing, the Sentinel-1 images were cropped to the 

extent of the study area. Then, the Apply Orbit File was applied by updating the metadata to acquire 

an accurate satellite position, followed by Thermal Noise Removal to reduce the noise effect in inter-

sub-swath textures. Another step, namely, Calibration, was used to convert the pixel digital number 

value to a unitless radiometrically calibrated radar backscatter followed by Speckle Filtering to 

remove speckle and improve the visual quality of the SAR images. In this study, a Refined Lee Filter 

with a 5x5 window size was selected because it could remove noise while maintaining the quality of 

the pixel points and edges of the image (Rana & Suryanarayana, 2019).  

Additional steps such as Terrain Correction were applied to the data by using the digital elevation 

model (DEM) from the Shuttle Radar Topographic Mission (SRTM) with a 30-meter spatial 

resolution. Also, the orbit files were used to geometrically correct the distortion of the images caused 

by topography such as layover, foreshortening, and shadow. Lastly, the terrain-corrected data was 

converted from the previously unitless backscatter to decibel (dB) by using logarithmic 

transformation. In addition, to identify the variety of land cover, false-color composite or band 

combination using multitemporal Sentinel-1 data was completed. This step was conducted so that the 

existing land cover could be identified which was then used to determine the training samples for 

classification. 

3.2. Sentinel-2 Data 

Sentinel-2 is an optical imaging program launched as part of the European Space Agency’s 

(ESA’s) Copernicus program. Sentinel-2 data were often used to carry out terrestrial observations 

such as forest monitoring, land cover change detection, and natural disaster management. Sentinel-2 

data are included in a multispectral, medium-resolution image with 13 spectral bands. For this study, 

Sentinel-2 data was acquired in July and has an 11.13% cloud cover, mostly located outside of the 

study area. More details on the Sentinel-2 data characteristics are presented in Appendix 3.  

Atmospheric correction was applied to the data to eliminate atmospheric disturbances. This 

process was completed using Command Prompt by utilizing the system from Sen2Cor 2.8.0. Band 
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selection was conducted to choose bands having a 10-meter spatial resolution, which were used as 

analysis material to match with the spatial resolution of the Sentinel-1 data. Therefore, only Band 2, 

Band 3, Band 4, and Band 8 were used in the image classification process. False-color composite 

(RGB: Band 8, Band 4, Band 3) was used to interpret the Sentinel-2 images of the training and 

validation areas (Fig. 2). All of the processing steps for the Sentinel-2 data were conducted using 

SNAP. 

 

 
Fig. 2. Visual differences in band composite (a) True-color composite (RGB: 432);  

(b) False-color composite (RGB: 843). 

3.3. Generating GLCM 

Textural analysis was performed on the Sentinel-1 data using the GLCM calculation in the SNAP 

software. GLCM contains integrated information concerning the direction, interval, and extent of 

changes of the gray level, serving as the basis for analysis of local area features in an image and their 

arrangement patterns (Hall-Beyer, 2017). Haralick et al. (1973) identified 14 types of texture features 

as part of the GLCM dataset. In this study, we used 10 types of textures (angular second moment 

(ASM), correlation, contrast, dissimilarity, energy, entropy, mean, variance, homogeneity, and max). 

These textures were used as the input dataset for the classification process. The results of the GLCM 

texture analysis from VH polarization can be seen in Fig. 3. 

 

 
Fig. 3. GLCM texture extraction results from Sentinel-1 VH polarization. 
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3.4. Supervised Classification and Validation Analysis 

Supervised classification was used to differentiate between ponds and paddy fields using the 

algorithms available in the SNAP software for Sentinel-2 imagery, such as minimum distance (MD) 

(Rajalakshmi et al., 2013), maximum likelihood (ML) (Marini et al., 2013), K-nearest neighbor 

(KNN), and random forest (RF) (Kulkarni & Lowe, 2016).  

 

 

Fig. 4. Workflow of processing that was conducted in this study. 

 

A brief explanation of each method is presented below: 

1. The ML classification assumes that the statistical distribution occurs normally in each class of 

each band and that the calculation of the probability of a certain pixel falls into a certain class. 

Additionally, the pixels are assigned to a class that has a high probability (Richard, 1999).  

2. The MD classification calculates the Euclidean distance from each unknown pixel to the mean 

vector for each class and uses the mean vector of each end member. Pixels are classified according 

to the nearest class based on the specified conditions except for the specified standard deviation 

or threshold. However, some pixels may be unclassified because they do not meet the 

predetermined criteria (Richards, 1999).  
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3. The KNN algorithm works by classifying the number (k) of neighbors that are located near to the 

training samples by calculating the Euclidean distance from the training data to the unclassified 

data (Li & Cheng, 2009).  

4. RF is a bootstrap aggregating method that creates a multiple-tree classifier by iteratively 

resampling the original data. The final class for the classification is determined by majority voting 

(Breiman, 2001). 

Before classification, the training areas were collected by conducting visual interpretation using 

the image composite from the Sentinel-2 data. Three classes were represented in the classification 

process, including pond, non-pond, and seawater areas.  More details about the data processing flow 

can be seen in Fig. 4.  

The classification results obtained from Sentinel-1 and Sentinel-2 imagery were validated by 

using the information from the high-resolution satellite image (HRSI) available from Google Earth. 

Approximately 2.520 points were collected and used to test the accuracy of the classification results 

from the Sentinel-1 and Sentinel-2 imagery analysis. The accuracy tests were carried out using the 

confusion matrix and kappa coefficient methods by calculating the producer, user, and overall 

accuracies (PA, UA, and OA, respectively). 

4. RESULTS AND DISCUSSIONS 

4.1. Classification Results Using Sentinel-2 Optical Bands 

The classification of Sentinel-2 images used the same classes as Sentinel-1 radar images (sea, 

pond, and non-pond) and used the same training data. Image classification was carried out by 

supervised classification with the RF, ML, MK, and KNN algorithms using the SNAP application. 

The purpose of using these four algorithms was to determine which algorithm was the most accurate 

when classifying images using the same sample data applied to Sentinel-1 image classification. The 

results of the Sentinel-2 image classification using the aforementioned algorithms and the comparison 

with the composite image using false-color can be seen in Fig. 5 below.  

 

 

Fig. 5. Result of Sentinel-2 image classification using RF, ML, MK, and KNN algorithms. 
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A narrow area is required to show more clearly the comparison of the classification results for 

each algorithm, as well as to identify the pond according to the given sample data based on the 

interpretation results. The ML and KNN classifications give good results with 0.884 and 0.876. The 

accuracies of ML and KNN were better when compared to the MD and RF classifications. The results, 

which are a test of the accuracy of each algorithm using the confusion matrix, are presented in Table 

2 below. From Table 2, it can be seen that the classification using the ML algorithm produced a better 

overall accuracy (88.4%) when compared to the other classifications. The KNN algorithm follows 

with an overall accuracy of 87.6%. The result that gives the lowest overall accuracy is the 

classification using the MD algorithm, having an overall accuracy of 75.4%. 

                                                                                                                    Table 2. 

Accuracy Test Result of Sentinel-2 Image Classification. 

Method 
Producer 

Accuracy (%) 

User 

Accuracy 

(%) 

Overall Accuracy 

(%) 

Minimum Distance 69.004 72.059 75.4 

Random Forest 72.671 86.761 81.0 

Maximum Likelihood 87.056 89.998 88.4 

K-Nearest Neighbor 83.944 89.807 87.6 

4.2. Selection of Sentinel-1 Data Images for Producing GLCM Features 

The GLCM textures were produced from the Sentinel-1 VH polarization data. VH polarization 

was used to describe surface conditions because it has a more precise visualization than VV 

polarization and because VH is more sensitive to changes in moisture on the surface cover 

(Arjasakusuma et al., 2020). The appearance of each image at a particular time (September 2019–

August 2020) can be seen in Fig. 6 below. In addition, we selected scenes with the most contrast 

between seawater and paddy fields to derive the GLCM metrics.  

 
Fig. 6. Sigma_VH Polarization of Sentinel-1 (a) 07 September 2019, (b) 01 October 2019, (c) 06 

November 2019, (d) 12 December 2019, (e) 05 January 2020, (f) 10 February 2020, (g) 05 March 

2020, (h) 10 April 2020, (i) 04 May 2020, (j) 09 June 2020, (k) 03 July 2020, (l) 08 August 2020. 
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Based on Fig. 6, which shows the Sentinel-1 image at various points in time, it can be seen that 

there is a different tone of the land area that is somewhat far from the coast. Based on the results of a 

rough interpretation, it can be assumed that these features are rice fields, which have different 

appearances at certain times (dark-light-dark). To prove this, further analysis was carried out by 

stacking or merging bands on Sentinel-1 image data at different times into one unit. After that, an 

RGB composite with a different time composition was formed by utilizing the same variation, which 

in this case was the VH polarization. 

The results of this RGB composite show objects that change over time. The changes that occur 

can be recognized by the appearance of a variety of colors. For several objects previously interpreted, 

further identification and analysis of the intensity of the dB values were conducted, especially for sea, 

ponds, and paddy fields, which at one time may have similar appearances (inundation phase). The 

differences between the spectrum of each object sampled over 12 months can be seen in Fig. 7. From 

Fig. 7, we selected October 2019, June 2020, and July 2020 as the input data for calculating the 

GLCM textural features, due to the large differences between ponds and paddy fields during these 

timeframes.  

 
  

Fig. 7. The VH-backscatter spectrum of objects on Sentinel-1 images  

between September 2019 and August 2020. 

4.3. Supervised Classification using GLCM from Selected Sentinel-1 Data 

Supervised classification was conducted by using the generated GLCM textures from selected 

images on October 2019, June 2020, and July 2020. There were 10 GLCM textures for each image, 

which brings the total number of input variables for classification to 30 textures for one polarization. 

We conducted the comparison of supervised classification with the ML and KNN algorithms using 

GLCM textures from VH polarization. The ML and KNN algorithms were employed since they 

performed well during the Sentinel-2 classification. However, we also conducted the supervised ML 

and KNN classification using VV polarization for comparison purposes. The classification results 

from both polarizations can be seen in Fig. 8.  

The accuracy assessment conducted on the results in Fig. 8, using the input GLCM textures from 

multitemporal VH polarization, identified the ML algorithm as the most accurate, having an OA of 

92.16%. For the aquaculture ponds class, the PA was 89.30% with a UA of 94.23%. The worst 

classification result was produced by using textures from VV, which showed a misclassification 

between seawater and pond. The accuracy using VV polarization lies between 88.11% (KNN) and 

89.2% (ML). Complete results of the PA, UA, and OA for the aquaculture class can be found in Table 

3.  
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Fig. 8. Results of classification with textures from VH using (a) ML and (b) KNN,  

and from VV using (c) ML and (d) KNN. 

                                                                                                                                         Table 3.  

Accuracy Assessment using GLCM from Sentinel-1 as the Input for Image Classification. 

Polarization Method 

Producer 

Accuracy 

(%) 

User 

Accuracy 

(%) 

Overall 

Accuracy (%) 

VV 

Maximum Likelihood 87.86 89.66 89.20 

K-nearest neighbor 81.91 92.72 88.11 

VH 

Maximum Likelihood 89.30 94.23 92.15 

K-nearest neighbor 89.71 91.47 90.95 

5. CONCLUSIONS 

This study has analyzed the potential of textural information using GLCM from multitemporal 

Sentinel-1 data for classifying aquaculture ponds when compared with the 10-meter bands of optical 

Sentinel-2 data. Sentinel-1’s GCLM textures using VH polarization were better than Sentinel-2’s for 

distinguishing aquaculture ponds, with a 92% OA, 89.30% PA, and 94.23% UA using the ML 

algorithm. Meanwhile, the highest OA produced by the Sentinel-2 data was 88.4% using the ML 

algorithm. Misclassification of ponds was frequently generated due to the similarities between ponds 

and seawater during coastal flooding that often occurred in the study area. In the future, the 

combination of all GLCM features or the combination from radar backscatter and texture with optical 

image classification can be tested with various methods to produce the highest accuracy.  
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