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ABSTRACT: 

The evolution of the Wulan Delta began after the construction of the Wulan River Canal in 1892. It 

alters the shoreline erosion and accretion that affect the land dynamics of the coastal area. This study 

aims to analyze the spatio-temporal evolution of the Wulan Delta, including the shoreline and its 

dynamics, as well as the geomorphological processes that affect it. The shoreline change was extracted 

digitally from Landsat satellite images and divided into four periods, i.e., 1995-2000, 2000-2011, 2011-

2015, and 2015-2020. We used the histogram thresholding method to separate the land from the sea 

and produce the shoreline as the interface. This research employed field check and focus group 

discussion for identifying the cause and impact of shoreline dynamics in the research area. The results 

show that land loss and accumulation over 25 years (1995-2020) are -7.16 km2 and +6.58 km2, 

respectively. In Wulan Delta, the erosion is due to high waves and sedimentation due to mangrove 

planting and high sediment from the rivers. The development rates of the Wulan Delta for the period 

of 1995-2020 were 73,200 m2/year. 
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1. INTRODUCTION 

The coastal area has high productivity of available resources and an essential role in supporting 

human lives (UNISDR/UNDP, 2012; Mutaqin, 2020; Marfai et al., 2020; Mutaqin et al., 2020). 

Hence, the coastal area is essential for human existence since almost all major cities are located in 

this area. Furthermore, one-third of the world population was living in the coastal area, and the 

numbers always increase year by year. This situation can inflict an increasing hazard level in the 

coastal areas since this area is very dynamic due to its natural and human processes (Mujabar and 

Chandrasekar, 2013; Mutaqin, 2017; Mutaqin et al., 2019; Arjasakusuma et al., 2021).  

Delta evolutions due to sedimentation are one example of the dynamics phenomenon in the 

coastal area (Chen et al., 2020; Collins et al., 2021). Wulan Delta (Fig. 1), as one of the most dynamics 

delta in Indonesia, has been experiencing rapid evolutions since the construction of the Wulan Canal 

in 1892 (Bird and Ongkosongo, 1980; Fadlillah et al., 2018; Fadlillah et al., 2019). The canal dredging 

generates intensive sedimentation that is transported through the Serang River and deposited in the 

estuarine. This condition has accelerated the formation and evolution of the Wulan Delta. As Fadlillah 

et al. (2018) state, aside from massive sediment transport, human construction in aquaculture and 

housing on Wulan Delta’s body also contributes to its development, including its water environment. 

Although the tidal patterns in Wulan Delta are categorized as micro-tidal with a mean of 0.8 m, flat 

morphology in this area leads to the tidal run-up that can reach far ashore, up to 8 km upstream during 

floods, and in other hands also making this area as an area which vulnerable to sea-level rise (Marfai, 

2014; Fadlillah et al., 2019). The evolution of the Wulan Delta provides several benefits to the local 

community. The community has utilized a broader land in Wulan Delta to build fishponds. 

Furthermore, the local community also competes to mark the new lands emerging in the estuarine 

during low tides to be recognized as their own (Ruswanto and Adisaputra, 1990). Simultaneously, 

several settlements and fishponds in three villages in the north of Wulan Delta (Semat, Tanggultlare, 

and Bulak Village) have been destroyed and sink in due to the erosion. Most residents in that three 
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villages were forced to move, about 250-m inland from their previous settlements. In 1984, some of 

the remaining buildings, e.g., houses, mosques, and water reservoirs, were still seen. However, in 

1993 all of the buildings were disappeared due to erosion (Ruswanto and Adisaputra, 1990). 

  
Fig. 1. Wulan Delta, one of the most dynamics delta in Indonesia. 

 

Sunarto (2005) has described Wulan Delta's morphology from 1925 to 1992; Wulan Delta's 

dynamics are further analyzed in this study, i.e., from 1995 to 2020. Marfai et al. (2016) also has 

explained the Wulan Delta's morphodynamics but focuses more on social impacts. Furthermore, this 

study aims to analyze the spatio-temporal evolution of the Wulan Delta, including the shoreline and 

its dynamics, as well as the geomorphological processes that affect it. The research results in the form 

of the spatio-temporal map of Wulan Delta during 1995-2020, calculation of land loss and land 

accumulation, as well as the assessment of the annual rate of the Wulan Delta evolutions, can use as 

an input for disaster mitigation strategy in this area and its surroundings. 

2. DATA AND METHODS 

2.1. Laboratory and computational analysis 

We used multi-temporal images of Landsat 5 TM (1995, 2000, and 2011) and Landsat 8 

OLI/TIRS (2015 and 2020) from USGS (https://earthexplorer.usgs.gov/) as the database to recognize 

the evolution of Wulan Delta (Table 1). The spatio-temporal monitoring in the coastal area using 

remote sensing data could help understand the erosion distribution and quickly predict coastal 

evolution trends with extensive coverage area (Wahyunto et al., 1995; Cracknell, 1999; Zhang, 2011; 

Mutaqin, 2017; Wicaksono and Wicaksono, 2019; Costantino et al., 2020; Arjasakusuma et al., 2021). 

Under normal conditions, the water favorably reflects the green wavelengths, i.e., Band 2 on 

Landsat 5 TM and Band 3 on Landsat 8 OLI/TIRS. The water also absorbs the energy at wavelengths 

that are longer than near-infrared. Near-infrared (Band 4 on Landsat TM and Band 5 on Landsat 

OLI/TIRS) is very well known in shoreline analysis since it distinguishes water from land (Tong et 

al., 2014; Al-Mansoori and Al-Marzouqi, 2016; Pardo-Pascual et al., 2018; Zhang and Hou, 2020). 

Therefore, this research's band ratios were 2/4 for Landsat TM and 3/5 Landsat OLI/TIRS. We used 

several steps to get better results during the satellite image processes (e.g.,interpretation and analyses), 
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such as image cropping, radiometric correction, histogram thresholding, and mean erosion distance 

(MED). We used Dark Object Subtraction (DOS) technique to fix the images' visual quality and fix 

the pixel values that did not correspond to the reflection values for radiometric image correction. This 

technique assumes that the digital value of the darkest objects on the Earth's surface is zero. 
Table 1. 

The types of satellite images used in this research. 

Images Censors Paths/rows 
Time acquired Resolution 

(m) Dates Clock 

Landsat 5 TM 120/65 May 22, 1995 13:55 30 

Landsat 5 TM 120/65 July 6, 2000 14:24 30 

Landsat 5 TM 120/65 June 19, 2011 14:37 30 

Landsat 8 OLI/TIRS 120/65 June 14, 2015 14:47 30 

Landsat 8 OLI/TIRS 120/65 August 30, 2020 14:48 30 

 

The shoreline information was identified digitally based on the satellite images' pixel values 

(Maglione et al., 2017; Zhang and Hou, 2020). The identification used ENVI 4.7 software with the 

assistance of histogram threshold feature on interactive stretching (Fig. 2a). Histogram thresholding 

is the process of separating land from the sea-based on pixel values. The thresholding includes 

dividing the histogram into two visually separated parts by graphical valleys seen in the histogram 

(Marfai et al., 2008; Aedla et al., 2015; Nassar et al., 2018; Ghorai and Mahapatra, 2020). Moreover, 

the tabulated histogram is described of frequency distributions, and to interpret land and water from 

it, a density slice was applied. Thresholding was done by shifting the line threshold step by step until 

the gap between water (max value) and land (min value) was reached minimum gap and feature 

distinction were clear (Tong et al., 2014). The thresholding results are binary images that have two 

values; value 0 for water and value 1 for land. These images are processed further to generate a 

shoreline. This histogram separation produces a minimum value that indicates the water body and a 

maximum value that indicates land. Pixel values from thresholding separation for each image have 

been generated, as shown in Table 2 that inform pixel values (minimum and maximum) for each 

feature. Moreover, the maximum water value gap and the minimum land value are where shorelines 

potentially emerge.           
Table 2. 

Pixel value for each feature. 

Images Year 
Water threshold Land threshold 

Min Max Min Max 

Landsat 5 TM 1995 0.552 0.792 0.795 2.896 

Landsat 5 TM 2000 0.074 0.527 0.530 3.926 

Landsat 5 TM 2011 0.194 0.519 0.521 3.500 

Landsat 8 OLI/TIRS 2015 0.552 0.743 0.744 2.670 

Landsat 8 OLI/TIRS 2020 0.554 0.749 0.751 2.625 

 

The shoreline erosion and accretion from 1995 to 2020 were identified using the image 

processing method results, which were performed and analyzed quantitatively with the Mean Erosion 

Distance (MED) technique. With the MED technique, we also can obtain and determine the average 

land loss and land accumulation in the research area. The scenario and the equation used in MED are 

shown in Fig. 2b and Eq. 1. The MED equation used in shoreline monitoring was according to Tong 

et al. (2014). The spatio-temporal evolutions of the Wulan Delta were identified quantitatively from 

the equation and then analyzed in a qualitative descriptive manner. 

To determine the processes that occurred in the shoreline, we establish four sections as an 

observed shoreline based on the existing main processes. Sections A and D were selected to identify 

the primary morphodynamics processes and their influence on the Wulan Delta evolution. In contrast, 

Sections B and C were selected to determine the evolution of the delta. The section analysis aimed to 

obtain detailed information on the processes occurring in each section. 
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(a) (b) 
Fig. 2. (a) An example of a histogram thresholding technique to separate the land and the water; and (b) 

Mean Erosion Distance (MED) scenario. 

 

Mean Erosion Distance (m) = ES/L                                      (1) 

where: ES -eroded or accreted area (m2); 

   L   -length of shoreline erosion/accretion (m)  

2.2. Field observations  

We conduct a Focus Group Discussion (FGD) with the local community, especially the fishpond 

owners in Wulan Delta and its surrounding areas (Fig. 3a). The FGD aimed to gather the information 

and identify the cause and impact of the erosion and accretion in the Wulan Delta according to the 

local communities' perspectives through a discussion. Furthermore, validation of shoreline extraction 

results has been done during field observations by ground checking for some sample points to prove 

the existence of morphodynamics processes that occur by looking for evidence (Fig. 3b). 

 

 

 
(a) (b) 

Fig. 3. (a) Focus Group Discussion with the local community in Wulan Delta;  

and (b) Validation of shoreline extraction results during field measurements. 
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3. RESULTS AND DISCUSSIONS 

3.1. Shoreline change 

Detailed monitoring can show a clear description of the morphodynamics processes along the 

shoreline. As mentioned before, we divided the study area into four sections (A, B, C, and D). Section 

A consists of Purworejo, Betahwalang, and Wedung Village; Section B consists of Berahan Kulon 

Village; Section C consists of Berahan Kulon and Berahan Wetan Village; and Section D consists of 

Kedungmalang, Kalianyar, Surodadi, Panggung, Bulakbaru, and Tanggultlare Village. This research 

divided the years 1995-2020 into four periods, namely 1995-2000, 2000-2011, 2011-2015, and 2015-

2020. During 1995-2000, the shoreline in the study area shifted both seaward and landward (Fig. 4a). 

We used 11 years (from 2000 to 2011) due to limited data available on the website of the United 

States Geological Survey (USGS). The year 2005 was initially a time limit in the second period. 

However, the only available 2005 image was from Landsat 7 ETM+, which experienced a string. A 

string is a malfunction appearing in the image pixels, resulting in diagonal black stripes on the image. 

Even though the string is repairable, the pixel value correction is not good enough for shoreline 

extraction. Moreover, the diagonal black stripes are also found on Landsat 7 ETM+ images from 2005 

to 2010. Therefore, this research used the 2011 image of Landsat 5 TM as a substitute. 

 

  
(a) (b) 

  

(c) (d) 

Fig. 4. The shoreline changes in Wulan Delta and its surrounding area during: (a) 1995-2000;  

(b) 2000-2011; (c) 2011-2015 and (d) 2015-2020. 
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The shoreline change analysis during 2000-2011 (Fig. 4b) used the same regional section as the 

analysis during 1995-2000. The shoreline change during 2011-2015 (Fig. 4c) was most significant 

than the shoreline change in the previous years or during 2015-2020 (Fig. 4d). This is due to the less 

deposited shoreline length during 2011-2015 (17.76 km) compared to other years, i.e., between 22.98-

29.83 km. The shoreline change rate in this area during 25 years is more significant than what has 

happened in Yogyakarta and East Java (Mutaqin, 2017; Arjasakusuma et al., 2021). 

Field observation was done by selecting 11 sample points (Fig.5) based on the most dynamic 

process that has occurred. Furthermore, this observation ensures the process generated from the 

laboratory by taking documentation and field observation. Locals accompanied this checking, so a 

locals interview was also conducted along with the observation to emphasize the results. According 

to Fadlillah et al. (2018), fishponds are the most dominant landuse; they expanded from 82.94% 

(2008) to 91.55% (2016) of major landuse in the Wulan Delta. Field observation strengthens this 

claim, and our observation found that from 11 ground points, 8 points were fishponds predominantly 

(Table 3). In addition, Mangrove plants were also found in 9 out of 11 points. As Marfai et al. (2016) 

assert that Wulan Delta morphodynamic causes landuse conversion from mangroves to fishponds; 

this condition will continue to happen in the future due to the extent of mangrove vegetation and 

fishponds as a local primary livelihood source.   
 

 
Fig 5. Field observation samples to ensure the process generated from laboratory. 

 

Based on local explanation through focus group discussion (Table 4), shoreline deposition on 

points A1 and A2 was caused by mangroves planting along the coast around the 2000s. Meanwhile, 

at point A3, there has been erosion since the 2000s and caused many fishponds to be damaged, and it 

was proven by the remains of wooden stakes near the shore. All sample points in area B show the 

land deposition process due to the massive sediment load from the Wulan River. According to the 

locals (Table 4), accretion has been going for a long time, and the mangrove zone has made the 

accretion faster and often triggers land ownership conflicts. There have been deposition in points B1, 
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B2, and B3, which began to form around 1990. Moreover, calm waves make the process more 

dominant and faster. 
Table 3. 

Validation result from field observation and interview.  

Sample 

point 

Dominant 

process 

(tentative map) 

Interview validation 

Vegetation Land use 
Process Note 

A1 Deposition  Confirmed 
The deposition had occurred since the 

2000s 
Mangrove 

Fishpond, 

settlement, port 

A2 Deposition  Confirmed 
The little deposition had occurred 

since the 2000s 
Mangrove Fishpond 

A3 Erosion Confirmed Erosion had occurred since the 2000s   Mangrove Fishpond 

B1 Deposition  Confirmed 
The massive deposition has occurred 

since 1990 
Mangrove - 

B2 Deposition  Confirmed 
The massive deposition has occurred 

since 1990 
Mangrove Fishpond 

B3 Deposition  Confirmed 
The massive deposition has occurred 

since 1990 
Mangrove Fishpond 

C1 Erosion  Confirmed 
Massive erosion has occurred since the 

1990s 
Mangrove - 

C2 Erosion  Confirmed 

Massive erosion has occurred since the 

1990s, emergence of spit landforms in 

early 2000 

- Empty land  

C3 Erosion Confirmed Erosion has occurred since the 2000s Mangrove Fishpond  

D1 Erosion  Confirmed Erosion has occurred before 1995 Mangrove Fishpond  

D2 Erosion Confirmed Erosion has occured before 1995 - Fishpond  

 

Table 4. 

Focus Group Discussion (FGD) result. 

Sample 

point 

Process 

confirmed 

Focus Group Discussion 

Cause Effect Local adaptation 

A1 Deposition  Mangrove planting New land 
New land used for 

fishponds 

A2 Deposition  Mangrove planting New land 
New land used for 

fishponds 

A3 Erosion High waves Fishponds damage Mangrove planting 

B1 Deposition  

Calm waves, 

sediment from the 

river 

New land, land claim conflict 
New land used for 

fishponds 

B2 Deposition  Sediment from river New land, land claim conflict 
New land used for 

fishponds 

B3 Deposition  

Calm waves, 

sediment from the 

river 

New land, land claim conflict 
New land used for 

fishponds 

C1 Erosion  High waves Mangrove damage Mangrove planting 

C2 Erosion  High waves 
The emergence of the natural 

barrier since the 2000s 
Mangrove planting 

C3 Erosion High waves Fishponds damage Mangrove planting 

D1 Erosion  High waves 
Fishponds damage, irregular 

beach 

Build shore protector 

from wood 

D2 Erosion High waves 
Fishponds damage, irregular 

beach 

Build shore protector 

from wood 

 

Point C1 is located in the forefront area at the delta’s foot and directly faces the open sea. Large 

waves have caused this area to experience shoreline erosion from 1995 until now. In addition, massive 
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damage to mangrove plants and fishponds has also occurred in this area. Point C2 is the location of 

Spit landform, and according to the local community (Table 4), it is also called 'Tirang', which 

stretches like an arrow along the coast around delta’s foot, and it emerged around the 2000s. This 

landform becomes a natural barrier to prevent further erosion. Uniquely, this landform stretch and 

covers seawater trapped on the land and formed a lagoon. Likewise, Point C3 has experienced erosion 

since the 2000s and damaged many fishponds. The shoreline erosion in area D also continues from 

1995 until these days. However, the shoreline retreat is not as intensive as before because the 

community started to make wave protectors from wood along the shore. Shoreline erosion at points 

D1 and D2 caused irregular shoreline form. The erosion makes the community's fishponds continue 

to be threatened, whereas aquaculture is still the local communities' main livelihood. 

 

3.2. Land loss and land accumulation 

The morphodynamics assessment emphasizes more on land loss and land accumulation during 

1995-2020. According to Sunarto (2005), Wulan Delta experienced positive growth continuously 

from 1925 to 1995. It changed from 1.9 km2 to 9.15 km2 over 70 years at a growth rate of 0.39 

km2/year. Shoreline change accompanied the evolution during 1995-2020 on the south and the north 

of the delta. The land loss and land accumulation in the south varied uniquely. However, the coastal 

area on the north experienced land loss progressively. 

The morphodynamics map, which shows the land loss and land accumulation in Wulan Delta and 

its surroundings during 1995-2020, is presented in Fig. 6. The map shows land loss distribution and 

land accumulation in 1995-2000, 2000-2011, 2011-2015, and 2015-2020. Aside from land loss and 

land accumulation, this map provides information on mean distance erosion and deposition, which 

are useful for determining the average distances of shoreline retreats and advances. Table 5 shows 

the land development and mean erosion or deposition distance. 

 

  
(a) (b) 

  
(c) (d) 

Fig. 6. Map of the spatio-temporal evolution of Wulan Delta and its surrounding during: (a) 1995-2000; 

(b) 2000-2011; (c) 2011-2015; (d) 2015-2020. 
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The shoreline in Section-A experienced moderate land loss during 1995-2000, i.e., 0.35 km2, and 

continuously increased until the period of 2011-2015, which reach 0.38 km2. However, the land loss 

had declined in the following years, i.e., 0.18 km2 in the period of 2015-2020. Meanwhile, this 

section's shoreline accretion fluctuated and peaked during 2000-2001, causing the most massive land 

accumulation, i.e., 0.71 km2. Coastal erosion leads to shoreline retreats by an average of 64.76 m. 

Meanwhile, due to accretion, the shoreline shifts with an average as far as 68.24 m seaward.  

The land loss and the land accumulation in Section-B are imbalanced. Land accretion tends to be 

higher since it is located in the river estuary (Arjasakusuma et al., 2021). The most extensive land 

accumulation was 1.62 km2 during 2000-2011, whereas the severest land loss was 0.16 km2 during 

2000-2011 and 2011-2015. The shoreline in this section has retreated by an average of 24.29 m and 

advanced by 72.12 m.  
Table 5. 

Morphodynamics and the mean erosion or deposition distances in Wulan Delta and its surroundings. 

Sections Periods 

Morphodynamics (km2) Eroded 

shoreline 

length (km) 

Deposited 

shoreline 

length (km) 

Mean 

erosion 

distance (m) 

Mean 

deposition 

distance (m) 
Land 

loss 

Land 

deposition 

Section 

A 

1995-2000 -0.35 0.38 -4.15 6.63 84.34 57.32 

2000-2011 -0.36 0.71 -3.99 6.76 90.23 105.03 

2011-2015 -0.38 0.09 -7.32 2.18 51.91 41.28 

2015-2020 -0.18 0.33 -5.53 4.76 32.55 69.33 

Section 

B 

1995-2000 -0.09 1.57 -3.51 12.69 25.64 123.72 

2000-2011 -0.16 1.62 -5.33 18.23 30.02 88.86 

2011-2015 -0.16 0.54 -12.66 11.57 12.64 46.67 

2015-2020 -0.15 0.49 -5.20 16.76 28.85 29.24 

Section 

C 

1995-2000 -0.44 0.02 -11.49 2.03 38.29 9.85 

2000-2011 -1.11 0.01 -12.45 1.24 89.16 8.06 

2011-2015 -0.57 0.13 -9.81 2.75 58.10 47.27 

2015-2020 -0.27 0.35 -8.03 4.32 33.62 81.02 

Section 

D 

1995-2000 -0.99 0.02 -9.95 1.63 99.50 12.27 

2000-2011 -1.22 0.00 -12.75 0.00 95.69 0.00 

2011-2015 -0.55 0.01 -11.49 1.26 47.87 7.94 

2015-2020 -0.18 0.31 -17.72 3.99 10.16 77.69 

 

A contrary phenomenon has been found in Section-C, where the land loss was dominant. 

Shoreline erosion created a land loss of 2.39 km2 over 25 years, whereas the land deposition reaches 

0.51 km2 with the highest land accretion is 0.35 km2 during 2015-2020. The length of the shoreline 

in Section-C continues to decline. The shoreline in this section has retreated with an average of 54.79 

m and advanced by 36.55 m. The land loss in Section-D, lying administratively on Jepara Regency, 

is the most severe. Over 25 years, total land loss in this section reaches 2.94 km2, with the most 

significant land loss was during 2000-2011, which reach up to 1.22 km2. Meanwhile, the most massive 

land accumulation was only 0.31 km2 during 2015-2020. The severe land loss reduces the length of 

the shoreline in Section-D progressively. On average, the shoreline in this section has retreated by 

63.31 m and advanced merely by 24.46 m. 

The shoreline morphodynamics was analyzed comparatively with the wind and wave data of 

Demak and Jepara. The analysis aimed to identify the relationship between the cause and impact of 

the shoreline with the coastal morphodynamics.  

Wind speed and direction influence the direction and magnitude of sea waves proportionally. 

During the west monsoon, the wind speed tends to become stronger, and the wave tends to become 

higher and more destructive (Muskananfola et al., 2020). This situation is different from the southern 

part of Java, where the high and extreme waves happened during the east monsoon (Mutaqin, 2017). 

Destructive waves erode the shoreline in Demak and Jepara (Muskananfola et al., 2020). On the 

contrary, during the east monsoon, the wind speed tends to be weaker, and the wave tends to be lower.  
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The intensity of the eastern sea wave is reduced by Muria Peninsula, causing land accretion along 

Demak and Jepara’s shoreline. 

The local community's adaptation is more to structural adaptation, such as making protective 

stakes and mangrove planting. Despite the loss, the positive side has been obtained by the fishermen. 

Fishers in area C are lucky because they can build the floating fish cage close to the beach because of 

the coastal erosion process, this evidenced by the discovery of several floating fish cage in area C. 

 

3.3. Evolution of Wulan Delta 

The delta initially had grown into a straight shape (strand plain) before it developed into a bird-

foot shape (digitate). According to Setiawan (2014), the shoreline accretion in Wulan Delta is due to 

Muria Volcano's presence that supplies abundant obsolete materials to the Wulan River. As a result, 

the Wulan River estuary experiences progradation continuously, and the Wulan Delta area widens. 

Fig. 7 shows Wulan Delta's development from 1995 to 2020, which also depicts image interpretation 

and field survey results. 

 

 
 

Fig. 7. The development of Wulan Delta during 1995–2020. 

 

Wulan Delta has a bird-foot shape because the Wulan River bifurcates into two rivers, i.e., 

northward and northwestward, causing shoreline accretion to occur on these two distributary 

channels. Also, these river channels develop differently. According to Sunarto (2005), the main 

development initially occurred on the northwestern channel. However, in 1972, the northern channel 

began to form. Therefore, the shape of the delta changes to arcuate, cuspate, and digitate. Based on 

the Wulan Delta development presented in Fig. 7, we identify the extensive development and delta 

growth rate during 1995-2020 (Table 6). 



 Bagus SEPTIANGGA and Bachtiar W. MUTAQIN / SPATIO-TEMPORAL ANALYSIS OF WULAN  … 53 

 

Table 6. 

The development and the growth rate of Wulan Delta during 1995 – 2015. 

Years Size of Delta (km2) Total growth (km2) Growth rate (km2/year) Growth percentage (%) 

1995 21.19 - - - 

2000 22.27 1.08 0.216 4.85 

2011 22.62 0.35 0.032 1.55 

2015 22.60 -0.02 -0.005 -0.09 

2020 23.02 0.42 0.084 0.02 

 

The Wulan Delta area always experienced extensive accumulation during 1995-2020, as seen in 

Table 6. It accumulated from 21.19 km2 in 1995 to 23.02 km2 in 2020. The most extensive land 

growth over 25 years happened during 1995-2000, which reach 1.08 km2. It was enormously more 

significant than the land growth during 2011-2015 since the Wulan Delta area was reduced by 0.02 

km2. The growth rate in Table 6 was obtained from the division of total growth by the length of the 

period. The highest growth rate was during 1995-2000, i.e., 216,000 m2/year, while the lowest one 

was during 2011-2015, i.e., 5,000 m2/year. The growth percentage describes the percentage of 

accumulated land to the total area of the Wulan Delta. It is proportional to total growth. 

4. CONCLUSIONS 

Over the years of 1995-2020, the shoreline change in Wulan Delta and its surroundings varied 

widely. An inconsistency is found in the southern part of the delta, representing shoreline retreats and 

advances. However, the shoreline continuously retreats in the northern part of the delta due to high 

waves. Wulan Delta has divided into two parts, i.e., southern and northern, which experience various 

changes. The northern shoreline retreats, while the southern one advances due to mangrove planting 

and high sedimentation from the rivers. During 1995-2020, the total land loss and accumulation in 

the study area were -7.16 km2 and +6.58 km2, respectively. The growth rates of the Wulan Delta over 

25 years (1995-2020) were 73,200 m2/year. 
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