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ABSTRACT 

The forest area in Kalimantan continues to decrease due to forest and land fires. One way to prevent 

this situation in Kalimantan is by predicting the number of hotspots based on climate indicators. Many 

modeling approaches, such as statistical and machine learning models, can be used. This study uses 

the best subset selection to build a regression model with regularization and Bayesian Model Averaging 

(BMA). Several predictors are used to predict the number of hotspots, including precipitation, 

precipitation anomalies, dry spells, El Nino Southern Oscillation (ENSO) and Indian Ocean Dipole 

(IOD) indices, and seasonality. The best model is selected based on the performance of the RMSE and 

𝑅2 values. The results of the best subset selection obtained are a model consisting of six terms in 

polynomial form and interactions of precipitation anomalies, dry spells, and IOD index. It can be 

concluded that there is a significant role of dry spells as a predictor for hotspots due to their presence 

in almost every term of the equation. The BMA model outperforms the regularization model, with an 

RMSE value on the test data of 664 hotspots and an 𝑅2 of 88.58%. Although Ridge, LASSO, and 

Elastic Net perform similarly to the BMA model during the training phase, their reliance on a single 

model can restrict their ability to generalize to new data. In contrast, BMA offers a more robust and 

accurate approach by aggregating predictions from multiple models and accounting for uncertainty. 

This ensemble method enhances BMA's predictive performance on test datasets, making it a valuable 

tool for accurate forecasting in complex scenarios. 
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1. INTRODUCTION 

The island of Borneo has a total forest area of 40.8 million hectares (Hardiyanti & Nurmanina, 

2020). However, this area is decreasing yearly due to various problems caused by the environment 

and humans (Margono et al., 2014). Gaveau et al. (2014) estimated that the forest area in Borneo 

decreased from 558,060 km2 (75.7%) in 1973 to 389,566 km2 (52.8%) in 2010, based on satellite 

imagery. One of the environmental problems that often occurs in Indonesia, especially on the island 

of Kalimantan, and causes a reduction in forest land is forest fires (Tacconi, 2016). Some examples 

of the largest forest fires in Indonesia occurred in 1982, 1997-1998, 2015, and 2019 (Najib et al., 

2022b; van der Werf et al., 2017). However, there are still many other cases of forest fires that occur 

every year until now. Forest fires have many negative impacts on the environment and humans, such 

as material losses, changes in the composition of forest ecosystems, damage to land and forest 

vegetation, and disruption of human health, especially in communities around the fire location 

(Borrego et al., 2025; Jolly et al., 2022; Saharjo & Hasanah, 2023). These negative impacts make 

forest fires potentially threaten the environment and humans, so further prevention and handling 

measures are needed (Hu et al., 2018). 
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Climate is one of the factors causing forest fires (Ertugrul et al., 2021). According to Syaufina 

and Puspitasari (2015), climate conditions such as precipitation, temperature, humidity, and air 

stability cause the potential for forest fires directly. As an archipelagic country flanked by the Indian 

Ocean and the Pacific Ocean, climate conditions in Indonesia are greatly influenced by oceanographic 

conditions, especially in both oceans (Kurniadi et al., 2021; Iskandar et al., 2022). Two types of 

natural phenomena are global climate variability and can affect oceanographic conditions, i.e., ENSO 

(El Nino Southern Oscillation) in the Pacific Ocean and IOD (Indian Ocean Dipole) in the Indian 

Ocean (Rachman et al., 2024; Hidayat et al., 2025). Both phenomena affect climate conditions in 

Indonesia, especially in terms of precipitation and drought levels that can cause forest fires (Nurdiati 

et al., 2021). 

Climate conditions form specific patterns over a while (Chi et al., 2023). For example, a region 

with a tropical climate, such as Indonesia, tends to have high precipitation levels during the rainy 

season and high drought levels during the dry season. This pattern will repeat itself every year 

following the season period and is usually called a seasonal pattern. The pattern formed by climate 

conditions over a certain period makes climate conditions predictable for humans. Currently, experts 

have developed many methods to predict things that will happen in the future based on past data, such 

as Artificial Intelligence (AI) and machine learning (Latif et al., 2023; Reichstein et al., 2019).  

AI and machine learning are extensively applied in various aspects of human life, including 

predicting future scenarios (Huntingford et al., 2019; Sarker IH, 2021). Experts across fields 

continuously refine prediction models to improve accuracy and minimize errors (Basha & Rajput, 

2019). From education and healthcare to economics, these technologies assist in decision-making by 

using past data to model future outcomes (Javeed et al., 2023; Jdey et al., 2023; Pallathadka et al., 

2023; Sahu et al., 2023). One example is using machine learning to predict and prevent forest fires by 

analyzing climate indicators, helping to make proactive decisions for environmental management 

(Alkhatib et al., 2023). 

Many studies on the influence of climate conditions in Indonesia on indications of forest fires 

have been conducted by researchers. Nugrahani et al. (2024) used information on climate conditions 

(precipitation, dry spells, ENSO, and IOD) to predict the number of hotspots in Kalimantan as an 

indicator of forest fires by constructing an artificial neural network, random forest regression, gradient 

boosting, and Bayesian regression models. Mahendra et al. (2022) classified forest and land fires in 

Palembang, South Sumatra, using the C4.5 decision tree algorithm based on precipitation, wind speed, 

and air humidity information. Preeti et al. (2021) compared the decision tree algorithm, support vector 

machine, and random forest regression to predict forest fires based on information on climate 

conditions, including temperature, precipitation, wind, and air humidity. 

Based on previous studies, many types of prediction models can be used to predict forest fires 

based on climate indicators, such as the Artificial Neural Network (ANN) model and the Random 

Forest model. ANN models have been widely used for predicting forest fires due to their ability to 

model complex, nonlinear relationships between climatic variables and fire occurrences (Jain et al., 

2020). Random Forest models, on the other hand, offer robust prediction capabilities with high 

accuracy and are well-suited for handling large datasets (Kursa, 2014), making them ideal for 

predicting forest fires based on multiple environmental and climatic factors. The choice of an 

appropriate prediction model plays a critical role in forest fire prevention and mitigation, depending 

on the type of research being conducted and the specific fire indicators being used. If conducting 

research using a classification system such as Mahendra et al. (2022), then the prediction model is 

also a classification model. However, if researching to determine the effect of the relationship between 

climate indicators and the potential for forest fires, such as Nugrahani et al. (2024) and Preeti et al. 

(2021), then the regression model is more appropriate. 

Hotspots are widely used as indicators of potential forest fires. Hotspots represent locations with 

a surface temperature above a certain threshold, identified through satellite imagery interpretation 

(Saharjo & Nasution, 2021). Generally, hotspots are spread randomly depending on the area's 

conditions, especially climate conditions. Hotspots are generally distributed across an area in a 

manner influenced by various environmental factors, particularly climate conditions. For instance, 
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areas with high precipitation tend to have fewer hotspots, while areas experiencing prolonged drought 

conditions are more likely to exhibit a higher concentration of hotspots (Giglio et al., 2018). The 

increasing number of hotspots correlates strongly with the likelihood of forest fires, as they often 

signal dry and combustible vegetation. Therefore, predicting the number of hotspots in a region based 

on climate variables, such as temperature or precipitation, could be a crucial step in forest fire 

prevention. 

The number of hotspots based on climate conditions can be predicted by creating a model that 

can recognize the influence of the relationship between climate conditions and the number of hotspots 

so that the linear regression model is suitable. Currently, many regression models have been 

developed to overcome problems that have been experienced in the use of previous regression models. 

One of the developments of the regression model is the regularized regression model, which can 

overcome the problem of multicollinearity in data (Fikri et al., 2023; Herawati et al., 2018; Venkatesh 

et al., 2023). Therefore, this study uses regularized regression models, i.e., a regularization regression 

model consisting of ridge regression, Least Absolute Shrinkage and Selection Operator (LASSO), 

and elastic-net as prediction models for the number of hotspots in Kalimantan based on climate 

indicators.  

In addition to the regularization regression model, this study also uses a prediction model that 

applies the ensemble method, called Bayesian Model Averaging (BMA), based on a polynomial 

regression model. BMA is a model that bases its predictions on a weighted average of several models 

rather than just one model (Hinne et al., 2020). Both models were built using a combination of the 

best predictor variables based on the results of variable selection using the best subset selection 

method so that the resulting model does not have too high complexity and is easy to implement. 

Furthermore, the performance of both types of models was compared, and the best model was selected 

in predicting the number of hotspots in Kalimantan based on specific climate indicators, i.e., 

precipitation, precipitation anomalies, dry spells, El Nino Southern Oscillation (ENSO) and Indian 

Ocean Dipole (IOD) indices, and seasonality.  

This study aims to develop apredictive model for forecasting the number of hotspots in 

Kalimantan using a comprehensive statistical approach. The main objectives of this research are as 

follows. Selecting the Best Combination of Predictors: The first step in this study is to select the best 

combination of predictors for forecasting the number of hotspots in Kalimantan. This selection 

process will use the best subset selection method, with the criterion for selection being the lowest 

Bayesian Information Criterion (BIC) value. This approach ensures that the most relevant and 

informative predictors are chosen for the predictive model. Constructing Regularization Regression 

Models: After determining the set of predictors, several regularization regression models will be 

constructed, including ridge regression, Least Absolute Shrinkage and Selection Operator (LASSO), 

and elastic-net regression. Additionally, a BMA model based on polynomial regression will also be 

developed. The use of these regularization methods aims to address multicollinearity and overfitting 

issues, ensuring that the models produced are stable and accurate. Determining the Best-Performing 

Model: The final step of the study is to evaluate the performance of each model in predicting the 

number of hotspots in Kalimantan. The evaluation will be based on two key metrics: Root Mean 

Square Error (RMSE) and the coefficient of determination (R²), on both training and test data. The 

model with the best performance according to these metrics will be selected as the most effective 

model for accurate prediction. Through this systematic scientific approach, the study aims to produce 

a reliable predictive model that can be utilized to better understand and mitigate the risks of forest 

fires in Kalimantan. 

This study contributes to the growing body of research on predictive modeling for forest fire 

management by addressing critical gaps in existing methodologies. While previous studies have 

utilized machine learning approaches such as Artificial Neural Networks (ANN) and Random Forest 

(RF) for forest fire prediction, these models often rely on single-model frameworks that may not 

adequately account for uncertainty or interactions among climate variables. In contrast, this research 

leverages BMA to integrate multiple model perspectives, enhancing robustness and predictive 

accuracy. 
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The novelty of this work lies in its application of BMA in combination with polynomial 

regression and best subset selection to predict forest fire hotspots. This approach allows for the 

inclusion of interaction terms and higher-order relationships among climate variables, such as dry 

spells, precipitation anomalies, and the Indian Ocean Dipole (IOD) index, which are often 

oversimplified in traditional regression models. Moreover, by incorporating uncertainty into 

predictions, the BMA model provides more reliable insights for decision-making, a feature critical 

for managing forest fires in complex environments like Kalimantan. 

Additionally, this study emphasizes the role of climate variability indicators in fire hotspot 

prediction, offering a systematic methodology that bridges the gap between theoretical modeling and 

practical application. These contributions not only advance the predictive modeling field but also 

provide actionable insights for environmental management and policy formulation in tropical regions. 

2. METHODS 

2.1. Multiple Linear Regression 

One of the simple and popular machine learning methods is linear regression. In principle, the 

linear regression method works by measuring the relationship between continuous variables, which, 

in this case, are assumed to have a linear relationship. The linear regression method that predicts a 

continuous variable based on more than one predictor variable is called multiple linear regression 

(Hope, 2020). The model produced by multiple linear regression is represented by 

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑛𝑥𝑛 + 𝜀 (1) 

where 𝑦 is a continuous response variable, 𝛽0 is the intercept or intersection, which is defined as the 

value of the response variable when all predictor variables are zero, 𝛽1 to 𝛽𝑛 are the coefficients of 

the 1st to 𝑛-th predictor variables, and 𝜀 is the error of the model. Linear regression models involving 

polynomial variables such as 𝑥𝑖
2 or 𝑥𝑖

3 are called polynomial regression models (Montgomery et al., 

2021). 

According to Han et al. (2024), regression parameters 𝛽𝑖 for 𝑖 = 0,1,2, … , 𝑛 are estimated by 

minimizing the sum of the squared errors of the model represented by 

𝑆𝑆𝐸 = ∑(𝑦𝑖 − 𝑦̂𝑖)
2

𝑛

𝑖=1

 (2) 

where 𝑦𝑖 and 𝑦̂𝑖 representing the actual and predicted values of the 𝑖-th observation point, respectively. 

Multiple linear regression is increasingly unable to work well using the ordinary least squares (OLS) 

as the number of predictor variables increases due to the increasing possibility of multicollinearity or 

linear relationships between predictor variables (Hope, 2020). Thus, a linear regression model with 

regularization such as ridge regression, Least Absolute Shrinkage and Selection Operator (LASSO), 

and elastic-net have been developed which has an additional penalty to overcome multicollinearity. 

2.2. Best Subset Selection 

Best subset selection is a widely used variable selection method for selecting predictor variables 

in linear models. This method selects a combination of several predictor variables that produce the 

best model based on specific evaluation metrics such as BIC, adjusted 𝑅2, and Mallows CP. Hastie et 

al. (2020) stated that if there is a vector 𝑌 of size 𝑛 × 1 containing the response variables, a matrix 𝑋 

of size 𝑛 × 𝑘 containing the predictor variables, and a subset of predictor variables with a size 𝑝 

between 0 and min{𝑛, 𝑘}, then the best subset selection method will find a combination of 𝑘 predictor 

variables that produces the best model. The combination of predictor variables overcomes the problem 

in the context of squared errors, which are represented by 

𝛽̂ = arg min
𝛽∈ℝ𝑘

‖𝑌 − 𝛽𝑋‖2
2 (3) 

where ‖𝛽‖0 ≤ 𝑘 dan ‖𝛽‖0 = ∑ 1𝑘
𝑖=1 {𝛽𝑖 ≠ 0}. 

The best subset selection method has advantages over other variable selection methods, such as 

forward selection and backward elimination. According to Brooks and Ruengvirayudh (2016), one of 
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the main advantages of best subset selection is choosing a model with the best combination of 

predictor variables by considering all models that can be formed based on the number of existing 

predictor variables. This advantage can overcome the limitations of the forward selection and 

backward elimination methods to produce a better model. However, if the number of predictor 

variables is enormous, this method must be considered due to the increasing computation time needed 

to create all possible models if the number of predictor variables increases (Brooks & Ruengvirayudh, 

2016). 

2.3. Regularized Regression Methods 

Regularization is used to shrink the estimated value of the regression coefficient by providing a 

penalty when the model does not meet the multicollinearity assumption (Yanke et al., 2022). 

Regularization has three methods: ridge regression, Least Absolute Shrinkage and Selection Operator 

(LASSO), and elastic-net. 

2.3.1. Ridge Regression 

The first regularization method is ridge regression, introduced by Hoerl (1962). Ridge regression 

overcomes multicollinearity by determining a biased estimator but has a smaller variance value than 

the variance value in multiple linear regression (Wasilaine et al., 2014). Meanwhile, multicollinearity 

is a problem that occurs due to two or more correlated predictor variables. According to Saleh et al. 

(2019), ridge regression provides a penalty to the model to provide limits for the coefficient values of 

the linear regression model so that they do not have tremendous values without limits. 

Ridge regression is represented by 

𝛽̂ = arg min 
𝛽

(𝑌 − 𝑋𝛽)𝑇(𝑌 − 𝑋𝛽) + 𝜆 ‖𝛽‖2
2 (4) 

where 𝛽𝑘×1 contains the regression coefficients to be estimated, 𝑌𝑛×1 contains the response variables, 

𝑋𝑛×𝑘 contains the predictor variables, 𝜆 is a shrinkage parameter whose value is always positive, and 

‖𝛽‖2
2 is a ridge penalty whose value is equal to ∑ 𝛽𝑗

2𝑘
𝑗=1  (Saleh et al., 2019). If 𝜆 approaches zero, the 

value of the regression coefficient will be greater as in OLS regression, but if 𝜆 → ∞ then the value 

of the coefficient will be closer to zero. 

2.3.2. Least Absolute Shrinkage and Selection Operator (LASSO) Regression 

Ridge regression has a disadvantage, i.e., it can only shrink the regression coefficient to near 

zero, so a regularization method was introduced to overcome this deficiency. Tibshirani (1996) first 

introduced the Least Absolute Shrinkage and Selection Operator (LASSO) method, which was used 

to overcome the multicollinearity problem (Andana et al., 2017). According to Saleh et al. (2019), 

LASSO can overcome the shortcomings of ridge regression by shrinking the regression coefficient to 

zero. Therefore, LASSO is suitable for high-dimensional data because it can reduce the predictor 

variables used. If there is high-dimensional data that has as many predictor variables as 𝑘 and the 

number of data as 𝑛 where 𝑘 > 𝑛, then LASSO can be represented by 

𝛽̂ = arg min 
𝛽

(𝑌 − 𝑋𝛽)𝑇(𝑌 − 𝑋𝛽) + 𝜆 ‖𝛽‖1 (5) 

where ‖𝛽‖1 represents the LASSO penalty, which has the same value as ∑ |𝛽𝑗|𝑘
𝑗=1 . 

2.3.3. Elastic-Net Regression 

Zou and Hastie (2005) introduced a combined method of ridge regression and LASSO, i.e., 

elastic-net regression. According to Handayani and Wachidah (2022), the advantages of this method 

are that it can handle multicollinearity problems, can reduce the regression coefficient to precisely 

zero, can select predictor variables from a group of correlated predictor variables, and can select 

variables simultaneously. Elastic-net regression can be represented by 

𝛽̂ = arg min 
𝛽

(𝑌 − 𝑋𝛽)𝑇(𝑌 − 𝑋𝛽) + 𝜆 [𝛼 ‖𝛽‖1 + (𝛼 − 1)‖𝛽‖2
2] (6) 

where [𝛼 ‖𝛽‖1 + (𝛼 − 1)‖𝛽‖2
2] is the elastic net penalty with 𝛼 ∈ [0,1]. If 𝛼 = 0, Eq. 6 becomes the 

same as the ridge regression equation, while when 𝛼 = 1, Eq. 6 becomes the same as the LASSO 

regression equation. 
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2.4. Bayesian Model Averaging (BMA) 

BMA is a model that bases its predictions on a weighted average of several models rather than 

just one model (Alhassan et al., 2024; Huang et al., 2023). BMA applies an ensemble method by 

combining multiple models based on each model's posterior probability or weight. According to 

Claeskens and Hjort (2008), if there is a collection of models 𝑀1, . . . , 𝑀𝑚 that predict the value of the 

response variable 𝑦 from data 𝐷, then BMA bases its prediction results not only using one model but 

combining all models based on their posterior probabilities. BMA is represented by 

𝑃(𝑦|𝐷) = ∑ 𝑃(𝑀𝑘|𝐷)𝑃(𝑦|𝑀𝑘, 𝐷)

𝑚

𝑘=1

 (7) 

where 𝑃(𝑦|𝐷) is the weighted average of the posterior densities of y given the data 𝐷, 𝑃(𝑀𝑘|𝐷) is 

the posterior probability of the model 𝑀𝑘 given the data 𝐷, and 𝑃(𝑦|𝑀𝑘 , 𝐷) is the posterior density 

of 𝑦, when the model 𝑀𝑘 is the most appropriate model. 

𝑃(𝑀𝑘|𝐷) or the posterior probability of the model 𝑀𝑘 is obtained by applying Bayes' theorem 

and is represented by 

𝑃(𝑀𝑘|𝐷) =
𝑃(𝑀𝑘)𝜆𝑛,𝑘(𝐷)

∑ 𝑃(𝑀𝑗)𝑚
𝑗 𝜆𝑛,𝑘(𝐷)

 (8) 

where 𝑃(𝑀𝑘) is the prior probability of the model 𝑀𝑘, which is typically distributed uniformly 1/𝑚, 

while 𝜆𝑛,𝑘(𝐷) is the marginal density of the data 𝐷 represented by 

𝜆𝑛,𝑘(𝐷) = ∫ 𝐿(𝐷, 𝜃𝑘)𝑃(𝜃𝑘|𝑀𝑘) 𝑑𝜃𝑘 (9) 

where 𝜃𝑘 is a vector of the parameters of the model 𝑀𝑘, 𝐿(𝐷, 𝜃𝑘) is the likelihood function of the 

model 𝑀𝑘, and 𝑃(𝜃𝑘|𝑀𝑘) is the prior density of the model 𝑀𝑘 (Claeskens & Hjort, 2008). 

Just as the BMA model equation is a weighted average of the posterior densities 𝑦, the posterior 

mean value of the BMA model, denoted by 𝐸, is a weighted average of the posterior mean values for 

each model 𝑀𝑘 and is represented by 

𝐸(𝑦|𝐷) = ∑ 𝑃(𝑀𝑘|𝐷)𝐸(𝑦|𝑀𝑘 , 𝐷)

𝑚

𝑘=1

 (10) 

where 𝐸(𝑦|𝑀𝑘, 𝐷) is the posterior mean value when the model 𝑀𝑘 is the most appropriate model. 

2.5. Bayesian Information Criterion (BIC) 

Various criteria in variable selection have been developed and widely used in various studies. 

According to Dziak et al. (2020), several criteria in variable selection can be defined as a log-

likelihood function with a penalty known as the Information Criterion (ICs). The main objective of 

ICs is to select a model that minimizes the value of 

𝐼𝐶 =  −2𝑙 + 𝐶𝑛𝑝 (11) 

where 𝑙 is the log-likelihood function of the model, 𝐶𝑛 is a constant or penalty function whose type 

depends on the ICs criteria used, n is the number of sample data, and 𝑝 is the number of parameters 

in the model (Dziak et al., 2020). 

One type of IC widely used and has been widely developed is the Bayesian Information Criterion 

(BIC). BIC is a criterion widely used in variable selection methods and focuses on models with low 

complexity. BIC works by giving a high penalty to models with high complexity represented by the 

number of parameters in the model so that it can reduce the potential for overfitting (Kasali & 

Adeyemi, 2022). The penalty used in BIC, represented by 𝐶𝑛, is the ln(𝑛) function (Dziak et al., 

2020). The BIC differs from other types of ICs, such as the Akaike Information Criterion (AIC), 

which focuses on models with high accuracy, so selecting these two criteria is based on research 

needs. 

2.6. Evaluation Metrics 

Evaluation metrics are measurement criteria that are often used to determine the level of accuracy 

and feasibility of a model. One widely used evaluation metric is Root Mean Squared Error (RMSE). 
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RMSE is a method used to measure a prediction model's accuracy level as a form of model evaluation 

(Sanjaya & Heksaputra, 2020). RMSE calculates the average squared value of the number of errors 

in a prediction model. The lower the RMSE value, the more accurate the prediction model produced. 

The RMSE value is calculated by 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦̂𝑖 − 𝑦𝑖)2𝑛

𝑖=1   (12) 

where 𝑛 represents the number of data, 𝑦𝑖  and 𝑦̂𝑖 represents the actual and predicted value of the 

response variable from the 𝑖-th observation. 

In addition to RMSE, another widely used evaluation metric is the coefficient of determination 

or R-squared (𝑅2). 𝑅2 is one of the widely used model evaluation metrics to measure the performance 

of a prediction model. The 𝑅2 value is used to measure the variance in the response variable that can 

be explained by the model (Purwanto & Sudargini, 2021). The 𝑅2 value ranges from 0 to 1, with the 

higher the value, the better the model (Chicco et al., 2021). 

3. STUDY AREA AND DATASETS 

3.1. The Island of Borneo 

Borneo, the third-largest island in the world following Greenland and New Guinea, is a critical 

region for biodiversity and environmental science (Keong & Onuma, 2021). The island of Borneo 

covers an area located between 4°S-7°N and 108°E-120°E, covering approximately 743,330 km2 area 

(Sa’adi et al., 2020). The island, situated in Southeast Asia, is divided among three countries: 

Indonesia, Malaysia, and Brunei. The tropical equatorial climate of Borneo is categorized as tropical 

rainforest (Af), with uniform temperature all year round. Precipitation is substantial, averaging over 

3000 mm annually, and is distributed throughout the year, contributing to the island’s lush rainforests. 

Borneo represents a critical region for both scientific inquiry and conservation efforts. Its rich 

biodiversity, unique geological features, and significant environmental challenges make it a focal 

point for research to understand and preserve one of the world's most important natural areas (Keong 

& Onuma, 2021; von Rintelen et al., 2017). 

 

 
Fig. 1. Map of the island of Borneo. 

 

Kalimantan is the Indonesian portion of the island of Borneo, covering roughly 73% of the 

island's land area. Kalimantan encompasses five provinces: West, Central, South, East, and North 

Kalimantan, as shown in Figure 1. Each province has distinct geographical features, from the coastal 
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plains of West Kalimantan to the rugged highlands of East Kalimantan. Kalimantan is highly prone 

to fires due to natural and human-induced factors. These fires, often called "forest fires" or "slash-

and-burn" fires, have significant environmental, social, and health impacts (Harrison et al., 2024). 

Fires contribute to significant deforestation, loss of biodiversity, and degradation of ecosystems. 

Peatland fires release large amounts of carbon dioxide and other greenhouse gases, exacerbating 

climate change (Palamba, 2024). Furthermore, smoke from fires causes severe air pollution, leading 

to respiratory problems and other health issues for local communities and even affecting neighbouring 

countries (Sambodo et al., 2024). Moreover, fires can damage crops, disrupt livelihoods, and incur 

significant costs for firefighting and restoration efforts. 

In the lush landscapes of Kalimantan, the natural causes of forest fires are an integral aspect of 

the region's ecological dynamics. Forest fires in Kalimantan can occur due to several natural factors, 

each contributing to the intricate fire ecology of this tropical environment. The natural factors 

contributing to forest fires in Kalimantan are diverse and interconnected. Lightning strikes, land 

cover, spontaneous combustion, and seasonal weather patterns all play roles in the fire ecology of this 

region (Barros et al., 2021; Edwards et al., 2020). Understanding these factors is crucial for managing 

and mitigating the impact of forest fires in Kalimantan. Natural variations in weather patterns, such 

as El Niño events, can significantly impact fire risks (Brasika et al., 2021; Nurdiati, et al., 2022a). 

During El Niño years, Kalimantan often experiences prolonged dry periods, reducing soil moisture 

and increasing the flammability of vegetation. These weather patterns create ideal conditions for fires 

to ignite and spread, whether from natural or anthropogenic sources. 

3.2. Sources and Types of Datasets 

This study used hotspot data as an indicator of forest fire in Kalimantan. Hotspots are a crucial 

indicator for monitoring and predicting forest fires in Kalimantan, as well as in other fire-prone 

regions (Kadir et al., 2023; Usup & Hayasaka, 2023). In the context of forest fires, a hotspot refers to 

a location with an unusually high surface temperature, which can be detected using remote sensing 

technologies. These hotspots indicate areas where combustion or intense heating occurs, often 

associated with fire activity. In Kalimantan, these hotspots typically emerge during drought, 

exacerbated by various climatic phenomena. 

Total precipitation is one of the factors that influences fire activity (Fanin & Van Der Werf, 

2017). During months with below-average precipitation, the forest biomass becomes drier and more 

susceptible to ignition. In Kalimantan, the relationship between precipitation and fire hotspots is 

inversely correlated; the likelihood of fire hotspots increases as precipitation decreases. Conversely, 

higher precipitation levels dampen the forest floor, reducing fire susceptibility. In addition to total 

precipitation, precipitation anomalies are a climate factor that can significantly impact fire risk 

(Nurdiati et al., 2022b). Precipitation anomalies refer to deviations from normal precipitation patterns. 

During years of significant precipitation deficits (often linked to broader climatic trends), Kalimantan 

experiences an uptick in fire hotspots. For instance, a negative precipitation anomaly can lead to 

prolonged dry spells, creating ideal conditions for fire ignition and spread. Monitoring these 

anomalies helps predict potential fire outbreaks, enabling timely intervention. 

The number of dry days, called dry spells, is another critical factor in fire dynamics (Kumar & 

Kumar, 2022; Najib et al., 2024). In Kalimantan, prolonged dry spells can dry out surface litter and 

deeper soil moisture, making the region more susceptible to fire. Statistical analyses have shown that 

fire hotspots are more prevalent during periods exceeding a certain threshold of dry spells, 

emphasizing the cumulative effect of dryness. 

The El Niño Southern Oscillation (ENSO) significantly impacts global weather patterns, 

including Kalimantan. During El Niño years, the region often experiences drier-than-normal 

conditions, increasing fire hotspots (Najib et al., 2022a). The resulting drought stress on vegetation 

heightens the risk of fires as lower humidity and higher temperatures prevail. Conversely, during La 

Niña events, increased precipitation typically reduces fire occurrences. Understanding ENSO patterns 

aids in predicting fire risk and implementing pre-emptive measures. Elsewhere, the Indian Ocean 

Dipole (IOD) also plays a vital role in influencing precipitation patterns in Kalimantan. A positive 
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IOD phase often correlates with drier conditions, further exacerbating the risk of fire hotspots 

(Nurdiati et al., 2022a). Conversely, a negative IOD phase typically brings increased precipitation, 

which can mitigate fire risk. The interplay between IOD phases and local climate conditions 

underscores the complexity of fire dynamics in the region. Moreover, seasonality is another critical 

factor in understanding fire hotspots in Kalimantan. The dry season, particularly from July to 

September, often sees the highest incidence of fires (Najib et al., 2022b), coinciding with lower 

precipitation and higher temperatures. Human activities, such as land clearing for agriculture, often 

peak during this time, further increasing the risk of ignition. 

The interplay of natural factors creates a complex web of influences on fire dynamics. The 

relationship between fire hotspots in Kalimantan and natural factors like precipitation, climatic 

indices, and seasonality is intricate and multifaceted. Understanding the interactions between these 

factors is essential for effective fire management and conserving this vital ecosystem. In this study, 

we used multiple sources of datasets for each variable ranging from January 2001 until December 

2020. The hotspot data comes from the Indonesian Agency for Meteorological, Climatological, and 

Geophysics, which is processed data from MODIS sensors of the Terra and Aqua satellites curated to 

exclude false fire hotspots. Meanwhile, local climate data is obtained from CMORPH-CRT, and 

global climate data is sourced from PSL NOAA. For more details, Table 1 briefly describes the 

sources and types of data used. 
                                                                                                                                                              Table 1.  

Description of the sources and types of data used. 

Variable  Resolution Source 

Hotspots (𝒀) Monthly,  

0.25 × 

0.25 

Retrieved from Indonesian Agency for Meteorological, Climatological and 

Geophysics 

Total 

Precipitation 

(𝑿𝟏) 

Monthly,  

0.25 × 

0.25 

Retrieved from monthly data of CMORPH_CRT datasets 

https://ftp.cpc.ncep.noaa.gov/precip/PORT/SEMDP/CMORPH_CRT/DATA/ 

Precipitation 

Anomalies 

(𝑿𝟐) 

Monthly,  

0.25 × 

0.25 

Retrieved from monthly data of CMORPH_CRT datasets 

https://ftp.cpc.ncep.noaa.gov/precip/PORT/SEMDP/CMORPH_CRT/DATA/ 

Dry spells 

(𝑿𝟑) 

Monthly,  

0.25 × 

0.25 

Retrieved and processed from daily data of CMORPH_CRT datasets 

https://ftp.cpc.ncep.noaa.gov/precip/PORT/SEMDP/CMORPH_CRT/DATA/ 

ENSO index 

(𝑿𝟒) 

Monthly, 

time series 

Retrieved from https://psl.noaa.gov/gcos_wgsp/Timeseries/Nino34/ 

IOD index 

(𝑿𝟓) 

Monthly, 

time series 

Retrieved from https://psl.noaa.gov/gcos_wgsp/Timeseries/DMI/ 

Seasonality 

(𝑿𝟔) 

Monthly Month of data 

 

Based on previous studies (Najib et al., 2021), it is well-established that precipitation predictors 

derived from meteorological data significantly influence the occurrence and distribution of forest fire 

hotspots in Kalimantan. These predictors capture the dynamic relationship between rainfall patterns 

and fire activity, helping them to understand and potentially mitigate fire risks. Among these, three 

predictors stand out due to their strong correlation with hotspot frequency: the two-month average 

precipitation, the monthly precipitation anomaly, and the three-month number of dry days.  

The two-month average precipitation, denoted as 𝑋1, represents the mean rainfall over the 

observation month and the preceding month. This predictor provides a broader temporal context, 

smoothing out short-term fluctuations and highlighting the cumulative precipitation available to 

reduce fire risk. Lower values of 𝑋1 are generally associated with drier conditions that can exacerbate 

forest fire risks by reducing soil moisture and vegetation dampness. 
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The monthly precipitation anomaly, referred to as 𝑋2, quantifies the deviation of rainfall during 

the observation month compared to its long-term historical average, or "normal". This measure serves 

as a critical indicator of abnormal climatic conditions, such as extended dry spells or unusually wet 

periods, which can influence fire susceptibility. To ensure clarity in this study, the term "precipitation 

anomaly" is defined inversely to the typical interpretation: a positive anomaly value signifies a deficit 

in rainfall relative to the norm, while a negative value indicates an excess of precipitation. This 

reversed convention is intentional, facilitating a direct association between positive 𝑋2 values and 

increased fire risks due to insufficient rainfall. 

Lastly, the number of dry days over a three-month period, labeled as 𝑋3, captures the cumulative 

count of days with minimal precipitation, defined as less than 1 mm of rainfall per day. This predictor 

spans the observation month and the two preceding months, reflecting extended periods of dryness 

that are crucial for understanding fire dynamics. Prolonged dry periods, as indicated by higher 𝑋3 

values, often lead to reduced soil moisture and increased flammability of vegetation, creating 

favorable conditions for forest fires. 

Together, these derived precipitation predictors form a comprehensive framework for analyzing 

the influence of rainfall variability on forest fire hotspots. By capturing both temporal trends and 

deviations from the norm, they provide valuable insights into the climatic drivers of fire activity in 

Kalimantan, enabling more effective risk assessment and management strategies. 

4. RESULTS AND DISCUSSION 

4.1. Pre-processing of Datasets 

In our quest to understand the dynamics of fire hotspots in Kalimantan, we begin by processing 

satellite data in Table 1. This approach allows us to pinpoint specific grid points that are significant 

to our study of fire incidents. Our research focuses primarily on lowland regions, such as Central and 

Western Kalimantan, where fire occurrences are more frequent (Figure 2a and 2b). These areas offer 

critical insights for effective fire management and climate studies. In contrast, regions with high 

precipitation, such as the Malaysian part of Borneo, experience fewer fire hotspots and are therefore 

not central to our analysis (Figure 2c). The abundant precipitation in these areas complicates the 

correlation between climate data and fire events, so our research prioritizes the more fire-prone 

lowland regions. 

To focus on regions significantly impacted by fire incidents, we applied a k-means clustering 

algorithm to identify grid points with the highest correlations to hotspot occurrences. This clustering 

method grouped spatial data based on similarity in fire activity and climatic conditions, allowing us 

to isolate areas most vulnerable to fire risks. Figure 2d illustrates the clustering results, highlighting 

the critical grid points selected for further analysis. These areas, primarily in lowland regions of 

Central and Western Kalimantan, were used to aggregate data for temporal modeling. By employing 

k-means clustering, we ensured that the analysis targeted regions with consistent patterns of fire 

occurrence, optimizing the model's ability to capture the relationship between climate indicators and 

hotspots. This spatial pre-selection process reduced noise in the dataset caused by areas with low fire 

activity or high precipitation, such as the Malaysian part of Borneo. The selected grid points were 

aggregated into a time series format, enabling the study to focus on temporal dynamics while retaining 

spatial relevance through targeted grid selection. 

By aggregating the relevant grid points into a time series, we can effectively track fire 

occurrences over time, identifying patterns and trends that emerge in relation to climatic variations. 

This focused methodology allows us to disentangle the complex relationships between precipitation 

and fire activity. Our satellite data processing aims to illuminate the region’s most vulnerable to fire 

risks while acknowledging the intricate interplay of climatic factors. By concentrating on the low-

precipitation areas with high-fire incidents, we hope to provide valuable insights that inform targeted 

interventions and enhance our understanding of fire dynamics in Kalimantan's unique environment. 
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 (a) elevation (b) average annual hotspots 

  
 (c) average annual precipitation (d) selected area using k-mean clustering 

Fig. 2. Map of the island of Borneo showing: a) elevation, b) average annual hotspots, c) average annual 

precipitation, and d) selected area using k-mean clustering. 

4.2. Correlation Between Variables 

In this section, we conduct a cross-correlation analysis between fire hotspots and climatic factors, 

as shown in Figure 3. Our analysis reveals that the highest correlation with fire hotspots is observed 

with the variable dry spells, yielding a correlation coefficient of 0.699. This strong positive correlation 

suggests that prolonged dry conditions significantly increase fire occurrences. Additionally, we find 

the highest correlation among the climatic factors is between total precipitation and dry spells, with a 

coefficient of -0.876. This inverse relationship indicates that as total precipitation increases, the 

frequency or duration of dry spells tends to decrease, which aligns with the understanding that wetter 

conditions typically mitigate fire risk. 

Given these correlations, the implications for predicting fire hotspots using climatic factors are 

substantial. The strong correlation between dry spells and fire hotspots implies that monitoring and 

forecasting dry conditions could effectively predict fire risks. In regions with anticipated dry spells, 

proactive measures can be implemented to mitigate potential fire outbreaks. Furthermore, the inverse 

relationship between total precipitation and dry spells emphasizes the importance of rainfall patterns 

in fire prediction models. By integrating total precipitation and dry spells into predictive models, we 

can improve the accuracy of forecasts regarding fire hotspots. Additionally, understanding the 

interactions between these climatic factors—such as the influence of the ENSO and IOD indices—

can provide further insights into seasonal variations and long-term trends in fire occurrences. 
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Fig. 3. Heatmap of cross-correlation analysis between fire hotspots and climatic factors. 

 

4.3. Polynomial Features and Variable Selection 

The weak linear relationship observed between the response variable and the predictor variable, 

as shown in Figure 3, indicates that the data may not be suitable for input for a linear regression 

model. This weak correlation can lead to a phenomenon known as underfitting, where the model fails 

to learn and represent the underlying patterns in the data adequately. Consequently, adopting 

alternative methods that enhance the model's ability to capture these subtle relationships becomes 

essential. One such method is the application of polynomial features, as proposed by Maulud and 

Abdulazeez (2020). This technique transforms the predictor variables by applying specific polynomial 

degrees, thus generating additional predictor variables. The primary objective of this approach is to 

increase the complexity of the model, enabling it to learn better and fit the weak linear relationship 

between the response and predictor variables. The model can address the challenges posed by 

underfitting by employing polynomial features, improving its predictive performance, and providing 

a more accurate data representation. 

In addition to the challenges of weak linear relationships, linear regression models struggle to 

capture the interaction effects among variables directly. This is particularly relevant in the context of 

this study, where the predictor variables consist of multiple climate indicators that typically interact 

with one another. Adding additional predictor variables in the form of interaction terms becomes 

necessary to address this limitation. According to Bertsimas and Wiberg (2020), incorporating 

interaction variables can significantly enhance the model's ability to identify and learn from weak 

linear relationships among the variables. 

Considering this, this research integrates interaction terms as supplementary predictor variables, 

aiming to effectively capture the interactions between climate indicators in predicting the number of 

hotspots while simultaneously improving the model's accuracy. The addition of these interaction 

variables is implemented through the polynomial features method. By applying polynomial 

transformations up to a maximum degree of three, the analysis generates a total of seventy-seven 

additional predictor variables, as detailed in Table 2. This strategic enhancement broadens the scope 

of the model's input and allows for a more nuanced understanding of the interplay among climate 

indicators, leading to more precise and reliable predictions. 
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                                                                                                                                                              Table 2.  

Additional predictor variables resulting from the application of polynomial features. 

Type of Predictor Variable Number of Predictors Members of predictors 

variables of degree 2 6 𝑥1
2, 𝑥2

2, … , 𝑥6
2 

variables of degree 3 6 𝑥1
3, 𝑥2

3, … , 𝑥6
3 

interaction variables 65 𝑥1𝑥2, 𝑥1
2𝑥2, … , 𝑥1𝑥5𝑥6 

 

The inclusion of additional predictor variables, as illustrated in Table 2, brings the total number 

of predictor variables to eighty-three. This substantial increase in variable count can significantly 

prolong the computational time required to develop an accurate predictive model. To address this 

issue, a variable selection technique is employed to reduce the number of predictor variables, 

streamlining the modelling process. The dataset must first be divided into training and testing subsets 

before applying the variable selection technique to ensure a valid and reliable model evaluation. The 

training data, covering the period from January 2001 to December 2018, is utilized for model 

development, while the testing data, spanning from January 2019 to December 2020, assesses the 

model's performance. 

The selection of these specific time ranges is based on a series of experiments that explored 

various proportions of data allocation. This approach led to the identification of the optimal division 

that effectively balances the training and testing datasets. Ensuring that the training and testing periods 

do not overlap, the model is evaluated on data it never encountered during training. This methodology 

is essential for validating the robustness of the model's performance, as it allows for a more accurate 

assessment of how well the model can generalize to unseen data. This strategic division enhances the 

credibility of the results and contributes to a more reliable predictive framework. 

Subsequently, all predictor variables in the training dataset are selected using the best subset 

selection technique. This approach employs the Bayesian Information Criterion (BIC) as the metric 

for determining the optimal combination of predictor variables. A lower BIC value indicates a better 

model fit, which allows us to identify the most effective combination of predictor variables for 

inclusion in the final model. The maximum number of predictor variables selected through this 

technique is limited to ten. The results of the variable selection process using best subset selection are 

visualized in a plot, as shown in Figure 4. This visualization clearly represents the selected variables 

and their respective contributions to the model, facilitating a better understanding of the relationships 

within the data. By employing this rigorous selection method, the model can achieve a more refined 

and efficient representation of the underlying patterns, enhancing its predictive capabilities. 

Figure 4 illustrates the ten combinations of predictor variables and their corresponding BIC 

values. Each line in the plot indicates the selected predictor variables for each combination, with the 

line length reflecting the order in which the variables were chosen. For instance, the combination 

represented in the second row from the bottom, which yields a BIC value of -293.5739, includes the 

variables 𝑥3
3 and 𝑥3

2. 

The combinations with the highest BIC values appear at the bottom of the plot, while those with 

the lowest values are positioned at the top. Consequently, the model that results in the lowest BIC 

value is constructed from a combination of six predictor variables, as highlighted in Figure 4 and 

presented in Eq. 13. This model achieves a BIC value of -307.6923, marking it as the best result after 

conducting various iterations of the best subset selection process with different maximum numbers of 

predictor variables. 

The results from the best subset selection, indicated by Eq. 13, revealed a model comprised of 

six terms in polynomial form, highlighting the interactions between precipitation anomalies (𝑥2), dry 

spells (𝑥3), and the Indian Ocean Dipole (IOD, 𝑥5) index. This model illustrates the complex 

relationships among these variables and their combined effect on hotspot occurrences. This finding 

suggests that these three climate indicators strongly influence the number of hotspots in Kalimantan, 

underscoring their critical role in environmental monitoring and predictive modelling. 

𝑦̂ = 𝛽̂0 + 𝛽̂1𝑥3
3 + 𝛽̂2𝑥3

2 + 𝛽̂3𝑥3 + 𝛽̂4𝑥2𝑥3
2 + 𝛽̂5𝑥3

2𝑥5 + 𝛽̂6𝑥2
2𝑥5  (13) 
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Fig. 4. Results of variable selection using best subset selection. 
 

A key takeaway from the analysis is the prominent role of dry spells as a significant predictor for 

hotspots. Their presence in nearly every term of the equation underscores their critical influence on 

environmental conditions that contribute to hotspot formation. Dry spells can exacerbate drought 

conditions, reducing soil moisture and increasing the likelihood of fire events, leading to higher 

hotspot counts. The interactions identified in the model further emphasize the importance of 

considering how these factors interrelate. For instance, the impact of precipitation anomalies may be 

modulated by the presence of dry spells, indicating that an increase in precipitation does not 

necessarily mitigate hotspots if dry conditions persist concurrently. 

This comprehensive understanding enhances predictive accuracy and provides valuable insights 

for stakeholders involved in environmental monitoring and management. By recognizing the interplay 

between these climatic factors, strategies can be developed to address and mitigate the risks associated 

with hotspot occurrences, particularly in vulnerable regions. 

4.4. Training for regularized regression and BMA models 

The prepared data was subsequently utilized to develop a regression model based on Equation 

(13) to predict the number of hotspots in Kalimantan. The first phase of model development involved 

training the model using a training dataset. This training process encompassed several regression 

models, specifically regularized regression techniques, including ridge, LASSO, and elastic-net 

regressions, alongside a BMA approach based on polynomial regression. 

4.4.1. Regularized Regression Models 

The training of the three regularized regression models begins with determining the 

hyperparameter values using a 10-fold cross-validation method. This approach is employed to identify 

the best lambda values for the ridge and LASSO regression models, while alpha and lambda 

hyperparameters are assessed for the elastic-net regression model. For the ridge and LASSO models, 

a total of 100 lambda values are randomly sampled from the range 10−10 to 1010 for application in 

the cross-validation process. In addition, the alpha value for the elastic-net model is determined by 

randomly selecting 20 alpha values from 0 to 1. During this procedure, the best lambda is applied in 

conjunction with each trial of alpha during cross-validation. 

The selection of the best hyperparameters is based on the lowest Mean Squared Error (MSE) 

observed during the validation process. The resulting hyperparameter values for alpha and lambda for 

each regression model, derived from cross-validation, are summarized in Table 3. This systematic 

approach ensures the models are finely tuned for optimal performance, facilitating more accurate 

predictions in subsequent analyses. 
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                                                                                                                                                              Table 3.  

Optimal hyperparameter values used in each regularized regression model. 

Regularized regression model alpha  Lambda 

Ridge  0*  0,01917910 

LASSO  1*  0,03053856 

Elastic-net  0,6841737  0,17868010 

*This hyperparameter value is a fixed value. 
 

The hyperparameter alpha values for the ridge and LASSO regression models, as indicated in 

Table 3, are fixed at 0 and 1, respectively. This specific allocation signifies the contrasting nature of 

these two regression techniques, with ridge regression favoring the inclusion of all predictors while 

LASSO regression actively eliminates some, leading to sparse models. In contrast, the elastic-net 

regression model employs an alpha value of 0.68, which is notably closer to 1, indicating a 

predominant reliance on the LASSO mechanism. This suggests that while elastic-net incorporates 

both ridge and LASSO elements, its behavior is more aligned with LASSO, thus promoting sparsity 

in the coefficient estimates. 

Moreover, the lambda values reflect the degree of regularization imposed on the coefficients of 

each regression model. The elastic-net model exhibits the highest lambda value of 0.18, as presented 

in Table 3, which is significantly greater than the lambda values of the ridge and LASSO models, 

both of which remain under 0.05. This elevated lambda in the elastic-net model results in a more 

substantial penalty on the coefficients, driving them closer to zero compared to those in the ridge and 

LASSO models. Consequently, this pronounced regularization effect of elastic-net can lead to better 

performance in scenarios where multicollinearity is present or when there are many predictors, as it 

combines the strengths of both regularization techniques while managing to reduce overfitting 

effectively. The interplay of these hyperparameters ultimately illustrates the nuanced approach of 

elastic-net regression, making it a powerful tool for tackling complex predictive modeling tasks. 

After determining the optimal hyperparameter values for alpha and lambda for each model, as 

presented in Table 3, these values were subsequently utilized to train the three regularized regression 

models for predicting the number of hotspots in Kalimantan. The resulting models included ridge 

regression, LASSO, and elastic-net, each characterized by distinct intercepts and coefficients detailed 

in Table 4. 
                                                                                                                                                              Table 4.  

Intercept and coefficient values for each predictor variable in the three regularized regression models. 

Coeficients* 
Regularized regression models 

Ridge LASSO Elastic-net 

𝜷𝟎  -3556,39  -4110,76  -1888,26 

𝜷𝟏  0,122  0,129  0,099 

𝜷𝟐  -11,50  -12,50  -8,51 

𝜷𝟑  356,33  398,11  230,76 

𝜷𝟒  0,043  0,042  0,046 

𝜷𝟓  -0,384  -0,386  -0,377 

𝜷𝟔  107,59  106,21  111,31 

*Intercept and coefficient values for the best variable combination based on the results of best subset selection 

in equation (13). 

The results of the regularized regression analysis indicate that the absolute value of the highest 

coefficient is attributed to the interception. This suggests a strong baseline level of prediction for the 

model when all predictors are held constant at zero.  

Among the predictor coefficients, the highest positive values are observed for 𝛽3 and 𝛽6. 

Specifically, 𝛽3 representing the coefficient for dry-spells, underscores its significant influence on the 

prediction of hotspots. This reinforces the finding that dry spells are critical factors contributing to 

fire risks, as they can create conditions conducive to ignition and spread.  
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In addition, 𝛽6 which captures the interaction between precipitation anomalies and the IOD index, 

highlighting the importance of understanding how these two factors work together. This interaction 

suggests that changes in precipitation patterns, influenced by IOD, can exacerbate or mitigate the 

effects of dry spells on hotspot occurrences. 

4.4.2. Bayesian Model Averaging (BMA) Model 

The training of the BMA model, based on polynomial regression, begins by determining the 

parameters of the BMA model, which consists of the coefficients and weights of the polynomial 

regression model. Determining the polynomial regression model coefficients is done by generating 

all possible polynomial regression models based on various combinations of predictor variables and 

estimating the regression coefficients for each model. Six polynomial regression models are then 

selected based on the lowest BIC (Bayesian Information Criterion) values, after which each model is 

assigned, a weight representing the influence of the selected models on the final BMA model. Table 

5 displays the interceptive values, regression coefficients, and weights for each selected polynomial 

regression model, obtained from the BMA model training process. 
                                                                                                                                                              Table 5.  

Summary of the BMA model components along with their respective weights. 

Coefficients Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

𝜷𝟎  -5426,87  -6250,85  -5853,77  -5258,17  -6764,41  -6181,12 

𝜷𝟏  0,148  0,166  0,157  0,144  0,178  0,165 

𝜷𝟐  -14,88  -16,88  -15,98  -14,55  -18,20  -16,80 

𝜷𝟑  497,45  567,61  537,13  485,77  614,88  564,54 

𝜷𝟒  0,039  0,00  0,042  0,044  0,00  0,00 

𝜷𝟓  -0,391  -0,411 -0,214  0,00  -0,225  0,00 

𝜷𝟔  103,05  109,05  0,00  0,00  0,00  0,00 

Weight 0,405  0,254  0,147  0,094  0,066  0,034 

 

Table 5 shows that each selected polynomial regression model has a different number of 

predictor variables. Model 1 is the model that uses all the predictor variables and has the most 

predictors, while Model 6 is the model with the fewest predictor variables, using only 3. Additionally, 

it can be observed that the intercept and regression coefficient values for each selected model tend to 

be small, with some coefficients approaching zero, similar to the regularization regression model. 

Table 5 also displays the weights for each selected model, where the total sum of the weights equals 

1. Model 1 has the most significant weight, with six predictor variables, indicating that this model 

best explains the overall data. Therefore, Model 1 will influence the final BMA model the most. 

Meanwhile, Model 6, with 3 predictor variables, has the most negligible weight, even below 5%. 

All the selected polynomial regression models will be combined into a single final BMA model 

based on the weights shown in Table 5. Table 6 provides detailed insights into the coefficients 𝛽 of 

the Bayesian regression model, describing the relationship between each predictor and the response 

variable. The coefficient column represents the expected effect of each predictor on the response 

variable. For instance, 𝛽3 has a coefficient of 530, suggesting that a unit increase in the corresponding 

predictor is associated with an average increase of 530 units in the response variable. These 

coefficients provide critical insights into the strength and direction of the relationships in the model. 

The 𝑝 ≠ 0 column indicates the posterior probability that each coefficient is not zero. Predictors 

𝛽1, 𝛽2, and 𝛽3 have 𝑝 ≠ 0 values of 100%, reflecting strong evidence of their significant impact on 

the response variable. On the other hand, predictors such as 𝛽4 (64.6%) and 𝛽6 (65.9%) exhibit lower 

probabilities, suggesting weaker evidence of their relevance. These probabilities highlight the varying 

levels of certainty about the predictors' importance within the model. Overall, Table 6 identifies 𝛽1, 

𝛽2, and 𝛽3 as the most significant predictors due to their high posterior probabilities, making them 

reliable contributors to the model. In contrast, 𝛽4, 𝛽5, and 𝛽6 show weaker evidence for inclusion, 

with lower probabilities, indicating higher uncertainty about their effects.  
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                                                                                                                                                              Table 6.  

Summary of the Bayesian Model Averaging (BMA) model. 

Coefficient p!=0 (%) EV SD Upper PI (95%) Lower PI (95%) 

𝜷𝟎  100 -5797 2038 -6069 -5525 

𝜷𝟏  100 0.1558 0.02802 0.1521 0.1595 

𝜷𝟐  100 -15.8 3.612 -16.3 -15.3 

𝜷𝟑  100 530 151.2 510 550 

𝜷𝟒  64.6 0.02613 0.0232 0.02303 0.02922 

𝜷𝟓  87.2 -0.3088 0.1691 -0.3314 -0.2862 

𝜷𝟔  65.9 69.41 58.9 61.56 77.26 

 

The inclusion of 95% credible intervals and posterior probabilities enhances the interpretability 

of the model, offering a comprehensive view of both the strength and reliability of each predictor's 

impact. Eq. 14 represents the final BMA model obtained. It shows that in the final BMA model, 

predictor variables are negatively and positively related to the response variable. These negatively 

and positively related variables are consistent with those in the regularization regression model. 

𝑦̂ = −5797 + 0.16𝑥3
3 − 15.8𝑥3

2 + 530.03𝑥3 + 0.03𝑥2𝑥3
2 − 0.32𝑥3

2𝑥5 + 69.41𝑥2
2𝑥5  (14) 

 

4.5. Testing and Evaluation of Models 

Four models have been trained: the ridge regression model, LASSO regression, elastic-net 

regression, and the final BMA model. The BMA model combines six selected polynomial regression 

models, with each model weighed according to its performance. These four models were subsequently 

tested using a separate test dataset. The purpose of testing the models is twofold: first, to evaluate the 

models' performance when applied to data they have not encountered before, and second, to assess 

the accuracy of each model in predicting the number of hotspots. This phase is critical in determining 

how well the models generalize beyond the training data and their reliability in making accurate 

predictions in real-world scenarios. 

The performance of the four models was evaluated using two model evaluation metrics: Root 

Mean Squared Error (RMSE) and the coefficient of determination (𝑅2). RMSE indicates how close 

the model's predictions are to the actual values, whereas a lower RMSE indicates better predictive 

accuracy. On the other hand, 𝑅2 measures the proportion of variance in the dependent variable that 

can be explained by the model, with higher values indicating better explanatory power. Performance 

measurement based on RMSE and 𝑅2 was conducted on the training and test datasets. The best-

performing model was selected based on the lowest RMSE and the highest 𝑅2 values. The RMSE and 

𝑅2 values for all four models are summarized in Table 7. 
                                                                                                                                                              Table 7.  

RMSE and R-squared values on training and testing data for regularized regression and BMA models. 

Model 
RMSE 𝑹𝟐 (%) 

Training Testing Training Testing 

Ridge  680,82 764,59 82,56 84,46 

LASSO  680,04 752,31 82,6 85,06 

Elastic-net  684,77 802,66 82,36 82,58 

BMA  681,97 664,33 82,5 88,58 

 

The values presented in Table 7 indicate no significant differences in RMSE and 𝑅2 values across 

the models when evaluated on the training data. However, these differences become more apparent 

when assessing the models on the test data. The final BMA model achieved the lowest RMSE on the 

test data, although this was not the case for the training data. Notably, the difference between the 

RMSE values for the BMA model on the training and test datasets was the smallest among all the 

models, suggesting that the BMA model is less likely to experience overfitting based on RMSE 
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values. Furthermore, the BMA model also had the highest 𝑅2 value on the test data, reaching 88.58% 

and its 𝑅2 value on the training data was also relatively high, at 82.5%. These 𝑅2 values demonstrate 

that the BMA model can explain approximately 88.58% of the variance in the test data and 82.5% of 

the variance in the training data. Therefore, the BMA model outperforms the other three models and 

is the best predictor of the number of hotspots in Kalimantan. 

BMA demonstrates superior robustness and accuracy in predictive modeling, particularly on test 

datasets, compared to regularization techniques such as Ridge, LASSO, and Elastic Net. Although 

these regularization methods effectively prevent overfitting and improve model interpretability by 

introducing penalties for complexity, they rely on a single model selection approach. This means that 

their predictive performance is contingent on the specific model chosen, which may not capture the 

full uncertainty inherent in the data. In contrast, BMA explicitly accounts for model uncertainty by 

averaging over a set of candidate models, weighted according to their posterior probabilities. This 

ensemble approach integrates information from multiple models, allowing BMA to leverage diverse 

perspectives on the data. As a result, it tends to produce more stable predictions, especially in 

scenarios where the underlying data-generating process is complex or not fully understood.  

BMA incorporates prior information and allows for the inclusion of prior beliefs about model 

parameters, leading to more informed predictions. This characteristic enhances its flexibility and 

adaptability to various data distributions, improving its performance on unseen data. When 

regularization methods may inadvertently select suboptimal models, BMA mitigates this risk by 

pooling information across multiple models, thereby capturing a broader range of possible outcomes. 

Furthermore, BMA's reliance on a probabilistic framework enables it to provide measures of 

uncertainty alongside predictions, which is invaluable for decision-making in fields like 

environmental science and resource management. By quantifying uncertainty, practitioners can make 

more informed decisions based on the predicted hotspots for forest fires or other critical events. 

While Ridge, LASSO, and Elastic Net may perform comparably during training, their single-

model focus can limit their generalizability. In contrast, BMA's ensemble approach, which averages 

predictions across multiple models and incorporates uncertainty, enhances its robustness and 

predictive accuracy on test datasets. 

4.6. Results Validation and Simulation 

To ensure the reliability and robustness of the BMA model, a comprehensive validation process 

was conducted using climate data from 2021 to 2024. This step was critical to assess the model’s 

performance on unseen data, ensuring its predictive accuracy and generalizability under varying 

climatic conditions. The validation involved applying the trained BMA model to a new dataset, which 

was processed consistently using the same methodology as the original dataset. Maintaining 

consistency in data preparation ensured that any observed differences in performance could be 

attributed solely to the model’s capabilities, rather than inconsistencies in data handling.   

The validation focused on key climate indicators that significantly influence fire risks. One such 

indicator was precipitation anomalies (𝑥2), which measure deviations in rainfall from the long-term 

average. This variable highlight unusual climatic conditions, such as abnormally dry or wet periods, 

that can impact fire susceptibility. Another crucial indicator was dry spells (𝑥3), defined as the number 

of days with less than 1 mm of rainfall over a specific period. Prolonged dry spells are strongly 

associated with heightened fire risk due to reduced soil moisture and increased vegetation 

flammability.   

In addition to these local climate variables, the validation also incorporated the Indian Ocean 

Dipole (IOD) index (𝑥5), a large-scale climate indicator that measures differences in sea surface 

temperatures between the western and eastern Indian Ocean. The IOD index has a well-documented 

influence on regional weather patterns, including rainfall variability across Kalimantan. By including 

this index, the BMA model was able to account for broader climatic drivers that impact local fire 

dynamics.  Pre-processed data, summarized in Figure 5, provides monthly data for three key climate 

indicators over the period from January 2021 to September 2024: precipitation anomalies (𝑥2), dry 

spells (𝑥3), and the Indian Ocean Dipole index (𝑥5). 
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Fig. 5. Pre-processed data for results validation, covering precipitation anomalies (𝑥2),  

dry spells (𝑥3), and the Indian Ocean Dipole index (𝑥5) from 2021-2024. 

 

Notable dry periods with prolonged dry spells and negative precipitation anomalies occurred in 

mid-2023 to end-2023, coinciding with positive IOD phases that exacerbate dry conditions. 

Conversely, wetter conditions with positive precipitation anomalies and fewer dry days were observed 

during 2022 and parts of 2024. The highest dry spell counts in mid-2023 and increasing dryness 

toward 2024 highlight periods of elevated fire susceptibility. Using the trained BMA model, 

validation data from 2021 to 2024 was employed to predict the occurrence of forest fire hotspots in 

Kalimantan and the results can be seen in Figure 6. 

Figure 6 displays the predicted number of forest fire hotspots in 2021 to 2024, modeled using 

BMA. The black line indicates observed historical hotspot data, with a notable spike in late 2019 

representing an extreme fire event. This historical pattern was likely used to calibrate its predictive 

capabilities. Expected values (red line) represents the central predictions of the model for the number 

of hotspots. It shows a generally low level of fire activity from 2021 to early 2023, with a clear upward 

trend and peak in mid-to-late 2023. Uncertainty range (yellow shading) represents the 95% confidence 

interval (CI). This highlights the uncertainty in the model's predictions, widening significantly during 

periods of high hotspot activity, such as the peaks in 2023 and 2024. 

 
Fig. 6. Predicted number of forest fire hotspots in 2021 to 2024, modeled using BMA. 

 

Predictions suggest a stable and relatively quiet period in terms of hotspots during 2021 and 2022. 

Starting in mid-2023, the model predicts an increase in fire activity, peaking in late 2023. These peaks 
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are likely tied to climatic conditions, such as prolonged dry spells or anomalies in rainfall, which are 

key predictors in the BMA model. During periods of low predicted activity (e.g., 2021-2022), the 

confidence intervals are narrow, reflecting high model confidence. In contrast, during peak activity 

(e.g., 2023-2024), the uncertainty widens, indicating the model’s acknowledgment of higher 

variability and unpredictability under extreme conditions. 

We compared our results with burned area data from SiPongi KLHK (see 

https://sipongi.menlhk.go.id/). Table 8 shows burned area data from SiPongi highlights trends in fire 

activity across Kalimantan provinces between 2019 and 2023. In 2019, the burned area reached an 

exceptional total of 684,599 hectares, driven by extensive fires across Kalimantan, especially in 

Kalimantan Tengah (317,749 hectares). This aligns with the observed spike in hotspots in the 

historical data used for testing the BMA model. In 2020, the burned area dropped sharply to 26,286 

hectares, reflecting a significant reduction in fire activity. This decrease is also reflected in the 

dramatic reduction in observed hotspots. These trends validate the model’s ability to respond to 

extreme events and to capture transitions between high and low fire activity periods. 
                                                                                                                                                              Table 8.  

Burned area data from SiPongi highlights trends in fire activity across Kalimantan provinces between 

2019 and 2023. 

Region 2019 2020 2021 2022 2023 

Kalimantan Barat 151,919 7,646 20,590 21,836 111,848.4 

Kalimantan Selatan 137,848 4,017 8,625 429 190,394.6 

Kalimantan Tengah 317,749 7,681 3,653 1,554 165,896.4 

Kalimantan Timur 68,524 5,221 3,029 373 39,494.4 

Kalimantan Utara 8,559 1,721 1,678 370 796.4 

Total (in hectares) 684,599 26,286 37,575 24,562 508,430.2 

 

During 2021 and 2022, the burned area remained relatively low, at 37,575 hectares and 24,562 

hectares, respectively. The BMA model's predictions for this period indicate relatively low numbers 

of hotspots with narrow confidence intervals, reflecting strong confidence in its forecasts. This 

alignment with SiPongi data demonstrates that the model effectively captures periods of reduced fire 

activity, particularly under stable climatic conditions and low fire risk. 

In 2023, a sharp increase in burned area is recorded, totaling 508,430 hectares. The most affected 

provinces were Kalimantan Barat (111,848 hectares), Kalimantan Selatan (190,394 hectares), and 

Kalimantan Tengah (165,896 hectares). Many recent studies have mentioned this fire incident in their 

studies (Nurlatifah et al., 2025). Correspondingly, the BMA model predicts a significant rise in 

hotspots for the same period, with notable peaks in expected values and wider confidence intervals. 

This reflects the model's awareness of heightened fire risks, and the variability associated with 

extreme fire seasons. The alignment between the burned area data and hotspot predictions in 2023 

validates the model’s utility for forecasting high-risk periods. 

Furthermore, we simulate the predictions of hotspots using the trained BMA model under neutral 

and positive Indian Ocean Dipole (IOD) conditions to reveal the relationship between predictor 

variables 𝑥2 (negative rainfall anomaly) and 𝑥3 (number of dry days) with the predicted number of 

hotspots. Figure 7 shows simulation results for various values of 𝑥2 and 𝑥3 under neutral Indian 

Ocean Dipole (IOD) conditions to predict hotspots in Kalimantan. Meanwhile, Figure 8 displays 

simulation results under positive IOD. 

Figure 7a illustrates how the number of hotspots increases as 𝑥3 (number of dry days) rises from 

25 to 60, under different fixed values of 𝑥2 ranging from -5 to 5. A consistent trend is observed where 

higher values of 𝑥3 led to a rapid increase in predicted hotspots, particularly when 𝑥3 exceeds 50. This 

indicates that prolonged periods of dryness have a significant amplifying effect on fire activity. 

Moreover, for any given 𝑥3, higher values of 𝑥2 (indicating lower rainfall anomalies or drier 

conditions) result in more hotspots. The steep increase in hotspots with both variables highlights the 

compounded impact of extended dry periods and reduced rainfall on fire risk. 
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 (a) (b) 

 

Fig. 7. Simulation results for various values of 𝑥2 and 𝑥3 under neutral Indian Ocean Dipole (IOD) conditions 

to predict hotspots in Kalimantan: a) influence of 𝑥3 on the number of hotspots under different fixed values of 

𝑥2, and b) influence of 𝑥2 on the number of hotspots under different fixed values of 𝑥3. 

 

Otherwise, Figure 7b examines the influence of 𝑥2 on the number of hotspots while keeping 𝑥3 

constant at values ranging from 40 to 60. For all 𝑥3 scenarios, the number of hotspots increases as 𝑥2 

moves from negative (wet conditions) to positive (dry conditions). Notably, the rate of increase in 

hotspots is steeper for higher 𝑥3 values. For instance, at 𝑥3 = 60, even a small shift in 𝑥2 towards 

drier conditions leads to a marked increase in hotspots, emphasizing the vulnerability of regions with 

extended dry days to changes in rainfall anomalies. 

 
 (a) (b) 

 

Fig. 8. Simulation results for various values of 𝑥2 and 𝑥3 under positive Indian Ocean Dipole (IOD) conditions 

to predict hotspots in Kalimantan: a) influence of 𝑥3 on the number of hotspots under different fixed values of 

𝑥2, and b) influence of 𝑥2 on the number of hotspots under different fixed values of 𝑥3. 

 

Under positive IOD, the value of 𝑥2 and 𝑥3 generally above their normal conditions. Therefore, 

the simulated range of 𝑥2 and 𝑥3 will be limited to values above their normal.  
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Figure 8a shows that as 𝑥3 increases from 40 to 60, the predicted number of hotspots rises 

steadily for all fixed values of 𝑥2. This indicates that under positive IOD conditions, a longer duration 

of dry days significantly escalates fire activity. The increase is more pronounced for higher values of 

𝑥2 (representing lower rainfall anomalies). For instance, when 𝑥2 = 5, the growth in hotspots with 

increasing 𝑥3 is considerably steeper than for lower 𝑥2 values, highlighting the compounded impact 

of dry conditions and extended periods without rain. Otherwise, Figure 8b examines the impact of 

𝑥2 on the number of hotspots for fixed 𝑥3 values ranging from 40 to 60. The number of hotspots 

increases as 𝑥2 becomes more positive, with the rate of increase being greater for higher 𝑥3 values. 

For example, at 𝑥3 = 60, even small increments in 𝑥2 lead to a substantial rise in predicted hotspots. 

This result indicates that under positive IOD conditions, the combination of a higher number of dry 

days and reduced rainfall intensifies fire risk more than each variable individually. 

The simulations under both neutral and positive Indian Ocean Dipole (IOD) conditions provide 

valuable insights into the relationships between the predictor variables 𝑥2 (negative rainfall anomaly) 

and 𝑥3 (number of dry days) and the predicted number of hotspots. These results highlight distinct 

patterns influenced by different climatic conditions, which are crucial for understanding and 

mitigating fire risks in Kalimantan. In both neutral and positive IOD conditions, the number of 

hotspots consistently increases with higher 𝑥3, reflecting the significant role of prolonged dry spells 

in intensifying fire activity. Under neutral IOD conditions, this relationship is evident but less 

pronounced compared to positive IOD scenarios. Positive IOD conditions amplify the effect of dry 

days, with hotspots increasing more steeply as 𝑥3 rises from 40 to 60. This suggests that during 

positive IOD phases, the combination of regional weather patterns and longer dry periods creates a 

more conducive environment for fires. Conversely, the simulations show that the number of hotspots 

increases as 𝑥2 becomes more positive (indicating lower-than-normal rainfall), with the effect being 

stronger under positive IOD conditions. For fixed 𝑥3 values, higher 𝑥2 results in a more rapid 

escalation of hotspots, particularly when 𝑥3 is already elevated. This compounding effect of reduced 

rainfall and extended dry periods underscores the critical importance of monitoring rainfall anomalies 

in predicting fire risk. 

The interaction between 𝑥2 and 𝑥3 is particularly noteworthy. During neutral IOD conditions, 

both variables influence the number of hotspots, but their combined effect is less severe compared to 

positive IOD conditions. Under positive IOD scenarios, the simultaneous increase in 𝑥2 and 𝑥3 leads 

to a dramatic rise in predicted hotspots. For instance, when 𝑥3 is at its highest values (e.g., 60), even 

small increments in 𝑥2 can significantly amplify the number of hotspots. This highlights the 

synergistic impact of these two variables during positive IOD phases, making such conditions 

particularly dangerous for fire outbreaks. 

These combined results underscore the heightened fire risk during positive IOD conditions due 

to the stronger influence of both dry spells and rainfall anomalies. While neutral IOD conditions also 

present fire risks, the amplified effect during positive IOD highlights the importance of tailored fire 

mitigation strategies based on prevailing climatic conditions. Monitoring both 𝑥2 and 𝑥3 is critical, 

especially during positive IOD phases, as their interaction can significantly elevate fire activity. 

Proactive measures, including early warnings and fire prevention efforts, should prioritize areas 

experiencing prolonged dry spells and below-normal rainfall during these periods. 

4.7. Discussion and Limitations of the Study 

The findings underscore the practical utility of the BMA model for forest fire management. By 

accurately predicting hotspots, this model empowers stakeholders to make proactive and data-driven 

decisions to mitigate forest fire risks. For instance, the integration of climate indicators, particularly 

dry spells and precipitation anomalies, enables the identification of critical periods when fire risks are 

heightened due to prolonged dry conditions or abnormal weather patterns. This temporal framework 

is crucial for optimizing the allocation of resources, such as positioning firefighting teams, enhancing 

surveillance in high-risk areas, and pre-positioning water storage for firefighting.  
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Furthermore, the model’s predictive capabilities can be integrated into early warning systems, 

providing timely alerts to local communities and allowing for the implementation of preventive 

measures such as controlled burns or the temporary suspension of activities like land clearing. 

The ability of the BMA model to incorporate uncertainty into its predictions enhances its 

robustness compared to single-model approaches. By providing probabilistic insights, the BMA 

model enables stakeholders to assess the likelihood of fire outbreaks under different scenarios. This 

is particularly important in a complex and dynamic environment like Kalimantan, where variability 

in climate conditions can lead to unforeseen challenges. By quantifying these uncertainties, decision-

makers can implement risk-informed strategies, such as prioritizing areas with a higher probability of 

fire occurrence while maintaining preparedness for lower-risk zones. This approach minimizes the 

potential for over-preparedness, which could result in resource wastage, and under-preparedness, 

which might exacerbate fire impacts. Ultimately, the BMA model equips policymakers and 

environmental managers with a tool not only for accurate forecasting but also for devising flexible 

and adaptive fire management strategies that can be dynamically adjusted as conditions evolve. 

While the study demonstrates the effectiveness of the BMA model in predicting forest fire 

hotspots based on temporal climate indicators, it does not incorporate spatial aspects into the 

prediction framework. This limitation arises because the analysis focuses on temporal patterns, such 

as dry spells, precipitation anomalies, and climatic indices, without accounting for the geographic 

variability of these factors across Kalimantan. For example, regions with distinct ecological and 

topographical characteristics may respond differently to the same climatic conditions, leading to 

spatial heterogeneity in hotspot occurrences. 

The absence of spatial considerations in the model implies that hotspot predictions are 

generalized across the entire study area, potentially overlooking localized factors such as land cover 

type, vegetation density, and proximity to human activities. Incorporating spatial data in future 

studies, such as GIS-based mapping or geostatistical models, could provide a more comprehensive 

understanding of fire dynamics and improve the model's utility for targeted interventions. For 

instance, spatially explicit models could help prioritize specific areas for monitoring or intervention, 

based on both temporal and spatial risk factors. 

5. CONCLUSION 

The first objective of the study was to identify the best combination of predictors for forecasting 

forest fire hotspots in Kalimantan based on climate indicators. The selection process aimed at 

minimizing the Bayesian Information Criterion (BIC) value, ensuring that only the most relevant 

variables were used. The research successfully used the best subset selection method, incorporating 

three key variables: precipitation anomalies, dry spells, and the Indian Ocean Dipole (IOD) index, 

into a mathematical equation consisting of six terms. The results showed that dry spells were a critical 

factor in predicting the occurrence of fire hotspots, playing a role in almost every significant model 

term. The use of polynomial interactions among these predictors allowed for a more nuanced 

understanding of how climate variables interrelate in driving fire risks. 

The second goal was to construct and compare multiple regularized regression models, including 

Ridge, LASSO, and Elastic Net, with a BMA. The regularized regression models aim to address 

common issues like multicollinearity and overfitting by introducing penalties for complexity. While 

Ridge, LASSO, and Elastic Net performed adequately, the study found that these single-model 

approaches had limitations, particularly in their ability to generalize well to new data. In contrast, the 

BMA model, which averages predictions from multiple models weighted by their posterior 

probabilities, offered a more comprehensive approach by integrating the benefits of various models 

and accounting for the inherent uncertainty in the data. 

Lastly, the study aimed to determine the best-performing model by evaluating the predictive 

accuracy of each model using Root Mean Squared Error (RMSE) and the coefficient of determination 

(𝑅2). Testing on unseen data revealed that the BMA model outperformed all other models, achieving  
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the lowest RMSE (664) and the highest 𝑅2 (88.58%) on test data. The BMA model's ensemble 

approach proved more robust, producing more accurate and reliable predictions, especially in the 

complex, uncertain scenario of predicting hotspots. This makes BMA a valuable tool for forest fire 

prediction, particularly in regions like Kalimantan, where climate conditions vary significantly. 

The study's results offer promising prospects for implementing more accurate predictive models 

in forest fire management in Kalimantan, particularly through the superior BMA approach over 

regularized regression models. Its ability to forecast hotspots with high accuracy provides a strategic 

advantage for early intervention, resource prioritization, and mitigation planning. For policymakers, 

the modelʼs predictions can inform proactive measures, such as community evacuation plans, policy 

adjustments regarding land use during critical periods, and optimizing budget allocation for 

firefighting efforts. This enables policymakers to predict fire hotspots, paving the way more precisely 

for effective preventive measures and improved early warning systems.  

This study highlights the strength of using BMA for predicting forest fire hotspots based on 

temporal climate indicators. However, it is important to acknowledge that the model's focus is limited 

to temporal dynamics, without considering spatial variability in fire occurrence across Kalimantan. 

This limitation restricts the model's applicability for geographically targeted interventions, which are 

crucial for efficient resource allocation and localized risk management. Future research should aim to 

integrate spatial data, such as land use patterns, vegetation types, and geographic features, to enhance 

the predictive power and applicability of the model. Incorporating these spatial dimensions would 

enable the development of a more holistic fire risk assessment framework, combining both temporal 

and spatial predictors to better inform decision-making processes in forest fire management 

Future studies could enhance this application by integrating real-time data streams, enabling 

dynamic updates to risk assessments and further improving the practicality of the model in rapidly 

changing environmental conditions. The BMA can also be extended to include a wider range of 

models and not just focus on polynomial models. These models can be tree-based, non-linear, machine 

learning, probabilistic models like Gaussian process, to neural networks. Moreover, further research 

should explore incorporating additional climate-related variables and utilizing advanced remote 

sensing technologies, as well as employing complex machine learning methods like deep learning. 

Developing adaptive predictive models that account for dynamic climate changes and new variables, 

such as land use effects, will be crucial for enhancing environmental management policies in 

Indonesia and other tropical regions. 
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