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ABSTRACT

The forest area in Kalimantan continues to decrease due to forest and land fires. One way to prevent
this situation in Kalimantan is by predicting the number of hotspots based on climate indicators. Many
modeling approaches, such as statistical and machine learning models, can be used. This study uses
the best subset selection to build a regression model with regularization and Bayesian Model Averaging
(BMA). Several predictors are used to predict the number of hotspots, including precipitation,
precipitation anomalies, dry spells, ElI Nino Southern Oscillation (ENSO) and Indian Ocean Dipole
(10D) indices, and seasonality. The best model is selected based on the performance of the RMSE and
R? values. The results of the best subset selection obtained are a model consisting of six terms in
polynomial form and interactions of precipitation anomalies, dry spells, and 10D index. It can be
concluded that there is a significant role of dry spells as a predictor for hotspots due to their presence
in almost every term of the equation. The BMA model outperforms the regularization model, with an
RMSE value on the test data of 664 hotspots and an R? of 88.58%. Although Ridge, LASSO, and
Elastic Net perform similarly to the BMA model during the training phase, their reliance on a single
model can restrict their ability to generalize to new data. In contrast, BMA offers a more robust and
accurate approach by aggregating predictions from multiple models and accounting for uncertainty.
This ensemble method enhances BMA's predictive performance on test datasets, making it a valuable
tool for accurate forecasting in complex scenarios.

Key-words: Bayesian model averaging, best subset, machine learning, regression, regularization.

1. INTRODUCTION

The island of Borneo has a total forest area of 40.8 million hectares (Hardiyanti & Nurmanina,
2020). However, this area is decreasing yearly due to various problems caused by the environment
and humans (Margono et al., 2014). Gaveau et al. (2014) estimated that the forest area in Borneo
decreased from 558,060 km? (75.7%) in 1973 to 389,566 km? (52.8%) in 2010, based on satellite
imagery. One of the environmental problems that often occurs in Indonesia, especially on the island
of Kalimantan, and causes a reduction in forest land is forest fires (Tacconi, 2016). Some examples
of the largest forest fires in Indonesia occurred in 1982, 1997-1998, 2015, and 2019 (Najib et al.,
2022b; van der Werf et al., 2017). However, there are still many other cases of forest fires that occur
every year until now. Forest fires have many negative impacts on the environment and humans, such
as material losses, changes in the composition of forest ecosystems, damage to land and forest
vegetation, and disruption of human health, especially in communities around the fire location
(Borrego et al., 2025; Jolly et al., 2022; Saharjo & Hasanah, 2023). These negative impacts make
forest fires potentially threaten the environment and humans, so further prevention and handling
measures are needed (Hu et al., 2018).

1School of Data Science, Mathematics and Informatics, IPB University, Bogor, Indonesia, (SN)
nurdiati@apps.ipb.ac.id, (IWM) wayanma@apps.ipb.ac.id, (IFH) ifebyhawari@apps.ipb.ac.id, (MKN)
mkhoirun@apps.ipb.ac.id

*Corresponding author: nurdiati@apps.ipb.ac.id


http://dx.doi.org/10.21163/GT_2025.202.10
mailto:nurdiati@apps.ipb.ac.id
mailto:wayanma@apps.ipb.ac.id
mailto:ifebyhawari@apps.ipb.ac.id
mailto:nurdiati@apps.ipb.ac.id
https://orcid.org/0000-0001-9571-7060
https://orcid.org/0000-0002-7961-9812
https://orcid.org/0000-0002-4372-4661

151

Climate is one of the factors causing forest fires (Ertugrul et al., 2021). According to Syaufina
and Puspitasari (2015), climate conditions such as precipitation, temperature, humidity, and air
stability cause the potential for forest fires directly. As an archipelagic country flanked by the Indian
Ocean and the Pacific Ocean, climate conditions in Indonesia are greatly influenced by oceanographic
conditions, especially in both oceans (Kurniadi et al., 2021; Iskandar et al., 2022). Two types of
natural phenomena are global climate variability and can affect oceanographic conditions, i.e., ENSO
(El Nino Southern Oscillation) in the Pacific Ocean and 10D (Indian Ocean Dipole) in the Indian
Ocean (Rachman et al., 2024; Hidayat et al., 2025). Both phenomena affect climate conditions in
Indonesia, especially in terms of precipitation and drought levels that can cause forest fires (Nurdiati
etal., 2021).

Climate conditions form specific patterns over a while (Chi et al., 2023). For example, a region
with a tropical climate, such as Indonesia, tends to have high precipitation levels during the rainy
season and high drought levels during the dry season. This pattern will repeat itself every year
following the season period and is usually called a seasonal pattern. The pattern formed by climate
conditions over a certain period makes climate conditions predictable for humans. Currently, experts
have developed many methods to predict things that will happen in the future based on past data, such
as Artificial Intelligence (Al) and machine learning (Latif et al., 2023; Reichstein et al., 2019).

Al and machine learning are extensively applied in various aspects of human life, including
predicting future scenarios (Huntingford et al., 2019; Sarker IH, 2021). Experts across fields
continuously refine prediction models to improve accuracy and minimize errors (Basha & Rajput,
2019). From education and healthcare to economics, these technologies assist in decision-making by
using past data to model future outcomes (Javeed et al., 2023; Jdey et al., 2023; Pallathadka et al.,
2023; Sahu et al., 2023). One example is using machine learning to predict and prevent forest fires by
analyzing climate indicators, helping to make proactive decisions for environmental management
(Alkhatib et al., 2023).

Many studies on the influence of climate conditions in Indonesia on indications of forest fires
have been conducted by researchers. Nugrahani et al. (2024) used information on climate conditions
(precipitation, dry spells, ENSO, and IOD) to predict the number of hotspots in Kalimantan as an
indicator of forest fires by constructing an artificial neural network, random forest regression, gradient
boosting, and Bayesian regression models. Mahendra et al. (2022) classified forest and land fires in
Palembang, South Sumatra, using the C4.5 decision tree algorithm based on precipitation, wind speed,
and air humidity information. Preeti et al. (2021) compared the decision tree algorithm, support vector
machine, and random forest regression to predict forest fires based on information on climate
conditions, including temperature, precipitation, wind, and air humidity.

Based on previous studies, many types of prediction models can be used to predict forest fires
based on climate indicators, such as the Artificial Neural Network (ANN) model and the Random
Forest model. ANN models have been widely used for predicting forest fires due to their ability to
model complex, nonlinear relationships between climatic variables and fire occurrences (Jain et al.,
2020). Random Forest models, on the other hand, offer robust prediction capabilities with high
accuracy and are well-suited for handling large datasets (Kursa, 2014), making them ideal for
predicting forest fires based on multiple environmental and climatic factors. The choice of an
appropriate prediction model plays a critical role in forest fire prevention and mitigation, depending
on the type of research being conducted and the specific fire indicators being used. If conducting
research using a classification system such as Mahendra et al. (2022), then the prediction model is
also a classification model. However, if researching to determine the effect of the relationship between
climate indicators and the potential for forest fires, such as Nugrahani et al. (2024) and Preeti et al.
(2021), then the regression model is more appropriate.

Hotspots are widely used as indicators of potential forest fires. Hotspots represent locations with
a surface temperature above a certain threshold, identified through satellite imagery interpretation
(Saharjo & Nasution, 2021). Generally, hotspots are spread randomly depending on the area's
conditions, especially climate conditions. Hotspots are generally distributed across an area in a
manner influenced by various environmental factors, particularly climate conditions. For instance,
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areas with high precipitation tend to have fewer hotspots, while areas experiencing prolonged drought
conditions are more likely to exhibit a higher concentration of hotspots (Giglio et al., 2018). The
increasing number of hotspots correlates strongly with the likelihood of forest fires, as they often
signal dry and combustible vegetation. Therefore, predicting the number of hotspots in a region based
on climate variables, such as temperature or precipitation, could be a crucial step in forest fire
prevention.

The number of hotspots based on climate conditions can be predicted by creating a model that
can recognize the influence of the relationship between climate conditions and the number of hotspots
so that the linear regression model is suitable. Currently, many regression models have been
developed to overcome problems that have been experienced in the use of previous regression models.
One of the developments of the regression model is the regularized regression model, which can
overcome the problem of multicollinearity in data (Fikri et al., 2023; Herawati et al., 2018; Venkatesh
etal., 2023). Therefore, this study uses regularized regression models, i.e., a regularization regression
model consisting of ridge regression, Least Absolute Shrinkage and Selection Operator (LASSO),
and elastic-net as prediction models for the number of hotspots in Kalimantan based on climate
indicators.

In addition to the regularization regression model, this study also uses a prediction model that
applies the ensemble method, called Bayesian Model Averaging (BMA), based on a polynomial
regression model. BMA is a model that bases its predictions on a weighted average of several models
rather than just one model (Hinne et al., 2020). Both models were built using a combination of the
best predictor variables based on the results of variable selection using the best subset selection
method so that the resulting model does not have too high complexity and is easy to implement.
Furthermore, the performance of both types of models was compared, and the best model was selected
in predicting the number of hotspots in Kalimantan based on specific climate indicators, i.e.,
precipitation, precipitation anomalies, dry spells, EI Nino Southern Oscillation (ENSO) and Indian
Ocean Dipole (10D) indices, and seasonality.

This study aims to develop apredictive model for forecasting the number of hotspots in
Kalimantan using a comprehensive statistical approach. The main objectives of this research are as
follows. Selecting the Best Combination of Predictors: The first step in this study is to select the best
combination of predictors for forecasting the number of hotspots in Kalimantan. This selection
process will use the best subset selection method, with the criterion for selection being the lowest
Bayesian Information Criterion (BIC) value. This approach ensures that the most relevant and
informative predictors are chosen for the predictive model. Constructing Regularization Regression
Models: After determining the set of predictors, several regularization regression models will be
constructed, including ridge regression, Least Absolute Shrinkage and Selection Operator (LASSO),
and elastic-net regression. Additionally, a BMA model based on polynomial regression will also be
developed. The use of these regularization methods aims to address multicollinearity and overfitting
issues, ensuring that the models produced are stable and accurate. Determining the Best-Performing
Model: The final step of the study is to evaluate the performance of each model in predicting the
number of hotspots in Kalimantan. The evaluation will be based on two key metrics: Root Mean
Square Error (RMSE) and the coefficient of determination (R2), on both training and test data. The
model with the best performance according to these metrics will be selected as the most effective
model for accurate prediction. Through this systematic scientific approach, the study aims to produce
a reliable predictive model that can be utilized to better understand and mitigate the risks of forest
fires in Kalimantan.

This study contributes to the growing body of research on predictive modeling for forest fire
management by addressing critical gaps in existing methodologies. While previous studies have
utilized machine learning approaches such as Artificial Neural Networks (ANN) and Random Forest
(RF) for forest fire prediction, these models often rely on single-model frameworks that may not
adequately account for uncertainty or interactions among climate variables. In contrast, this research
leverages BMA to integrate multiple model perspectives, enhancing robustness and predictive
accuracy.
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The novelty of this work lies in its application of BMA in combination with polynomial
regression and best subset selection to predict forest fire hotspots. This approach allows for the
inclusion of interaction terms and higher-order relationships among climate variables, such as dry
spells, precipitation anomalies, and the Indian Ocean Dipole (IOD) index, which are often
oversimplified in traditional regression models. Moreover, by incorporating uncertainty into
predictions, the BMA model provides more reliable insights for decision-making, a feature critical
for managing forest fires in complex environments like Kalimantan.

Additionally, this study emphasizes the role of climate variability indicators in fire hotspot
prediction, offering a systematic methodology that bridges the gap between theoretical modeling and
practical application. These contributions not only advance the predictive modeling field but also
provide actionable insights for environmental management and policy formulation in tropical regions.

2. METHODS

2.1. Multiple Linear Regression

One of the simple and popular machine learning methods is linear regression. In principle, the
linear regression method works by measuring the relationship between continuous variables, which,
in this case, are assumed to have a linear relationship. The linear regression method that predicts a
continuous variable based on more than one predictor variable is called multiple linear regression
(Hope, 2020). The model produced by multiple linear regression is represented by

Y = Bo+ Bixy + Boxy + o+ Puxy + € 1)
where y is a continuous response variable, S, is the intercept or intersection, which is defined as the
value of the response variable when all predictor variables are zero, g; to B, are the coefficients of
the 1st to n-th predictor variables, and ¢ is the error of the model. Linear regression models involving
polynomial variables such as x? or x? are called polynomial regression models (Montgomery et al.,
2021).

According to Han et al. (2024), regression parameters g; for i = 0,1,2, ..., n are estimated by
minimizing the sum of the squared errors of the model represented by

n

SSE =) (i = 9? @

where y; and y; representing the actual and predicted values of the i-th observation point, respectively.
Multiple linear regression is increasingly unable to work well using the ordinary least squares (OLS)
as the number of predictor variables increases due to the increasing possibility of multicollinearity or
linear relationships between predictor variables (Hope, 2020). Thus, a linear regression model with
regularization such as ridge regression, Least Absolute Shrinkage and Selection Operator (LASSO),
and elastic-net have been developed which has an additional penalty to overcome multicollinearity.

2.2. Best Subset Selection

Best subset selection is a widely used variable selection method for selecting predictor variables
in linear models. This method selects a combination of several predictor variables that produce the
best model based on specific evaluation metrics such as BIC, adjusted R2, and Mallows CP. Hastie et
al. (2020) stated that if there is a vector Y of size n x 1 containing the response variables, a matrix X
of size n X k containing the predictor variables, and a subset of predictor variables with a size p
between 0 and min{n, k}, then the best subset selection method will find a combination of k predictor
variables that produces the best model. The combination of predictor variables overcomes the problem
in the context of squared errors, which are represented by

p= arg min|lY — BX|I3 3)
where |81l < k dan [|Bll, = X, 1{B; # 0}.

The best subset selection method has advantages over other variable selection methods, such as
forward selection and backward elimination. According to Brooks and Ruengvirayudh (2016), one of
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the main advantages of best subset selection is choosing a model with the best combination of
predictor variables by considering all models that can be formed based on the number of existing
predictor variables. This advantage can overcome the limitations of the forward selection and
backward elimination methods to produce a better model. However, if the number of predictor
variables is enormous, this method must be considered due to the increasing computation time needed
to create all possible models if the number of predictor variables increases (Brooks & Ruengvirayudh,
2016).

2.3. Regularized Regression Methods

Regularization is used to shrink the estimated value of the regression coefficient by providing a
penalty when the model does not meet the multicollinearity assumption (Yanke et al., 2022).
Regularization has three methods: ridge regression, Least Absolute Shrinkage and Selection Operator
(LASSO), and elastic-net.

2.3.1. Ridge Regression

The first regularization method is ridge regression, introduced by Hoerl (1962). Ridge regression
overcomes multicollinearity by determining a biased estimator but has a smaller variance value than
the variance value in multiple linear regression (Wasilaine et al., 2014). Meanwhile, multicollinearity
is a problem that occurs due to two or more correlated predictor variables. According to Saleh et al.
(2019), ridge regression provides a penalty to the model to provide limits for the coefficient values of
the linear regression model so that they do not have tremendous values without limits.

Ridge regression is represented by

B =argmin Y =XB)"(Y —XB) + 2 1IBII3 (4)

where B« contains the regression coefficients to be estimated, Y,,,; contains the response variables,
X,.xx contains the predictor variables, A is a shrinkage parameter whose value is always positive, and
8113 is a ridge penalty whose value is equal to Zj;l ﬁf (Saleh et al., 2019). If A approaches zero, the
value of the regression coefficient will be greater as in OLS regression, but if A — oo then the value
of the coefficient will be closer to zero.

2.3.2. Least Absolute Shrinkage and Selection Operator (LASSO) Regression

Ridge regression has a disadvantage, i.e., it can only shrink the regression coefficient to near
zero, so a regularization method was introduced to overcome this deficiency. Tibshirani (1996) first
introduced the Least Absolute Shrinkage and Selection Operator (LASSO) method, which was used
to overcome the multicollinearity problem (Andana et al., 2017). According to Saleh et al. (2019),
LASSO can overcome the shortcomings of ridge regression by shrinking the regression coefficient to
zero. Therefore, LASSO is suitable for high-dimensional data because it can reduce the predictor
variables used. If there is high-dimensional data that has as many predictor variables as k and the
number of data as n where k > n, then LASSO can be represented by

B = argmin (¥ = XB)'(Y = XB) + 2 181, ©)
where ||8]], represents the LASSO penalty, which has the same value as Z§:1|ﬂj |

2.3.3. Elastic-Net Regression

Zou and Hastie (2005) introduced a combined method of ridge regression and LASSO, i.e.,
elastic-net regression. According to Handayani and Wachidah (2022), the advantages of this method
are that it can handle multicollinearity problems, can reduce the regression coefficient to precisely
zero, can select predictor variables from a group of correlated predictor variables, and can select
variables simultaneously. Elastic-net regression can be represented by

p= argmin Y =Xp)"(Y —XB) + Ala lIBlly + (@ — DIBIIZ] (6)
where [a ||B]l; + (@ — 1)||B]I3] is the elastic net penalty with a € [0,1]. If « = 0, Eq. 6 becomes the

same as the ridge regression equation, while when a = 1, Eq. 6 becomes the same as the LASSO
regression equation.
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2.4. Bayesian Model Averaging (BMA)

BMA is a model that bases its predictions on a weighted average of several models rather than
just one model (Alhassan et al., 2024; Huang et al., 2023). BMA applies an ensemble method by
combining multiple models based on each model's posterior probability or weight. According to
Claeskens and Hjort (2008), if there is a collection of models M;, ..., M,, that predict the value of the
response variable y from data D, then BMA bases its prediction results not only using one model but
combining all models based on their posterior probabilities. BMA is represented by

m

P(ID) = )" P(MD)P(y|M;, D) (7)
k=1
where P(y|D) is the weighted average of the posterior densities of y given the data D, P(M|D) is
the posterior probability of the model M, given the data D, and P(y|M,, D) is the posterior density
of y, when the model M, is the most appropriate model.
P(M,|D) or the posterior probability of the model M, is obtained by applying Bayes' theorem
and is represented by
P(My) A, (D) ®)
27 P(M;) 2 (D)
where P(M,,) is the prior probability of the model M,,, which is typically distributed uniformly 1/m,
while 4, , (D) is the marginal density of the data D represented by

Ak (D) = f L(D, 0,)P(6, M) 6, ©)

where 6, is a vector of the parameters of the model M,, L(D, 8,) is the likelihood function of the
model M,, and P(6,|M,) is the prior density of the model M, (Claeskens & Hjort, 2008).

Just as the BMA model equation is a weighted average of the posterior densities y, the posterior
mean value of the BMA model, denoted by E, is a weighted average of the posterior mean values for
each model M, and is represented by

P(My|D) =

m
EGID) = ) P(MID)EYIMy, D) (10)
k=1
where E (y|M,, D) is the posterior mean value when the model M,, is the most appropriate model.

2.5. Bayesian Information Criterion (BIC)

Various criteria in variable selection have been developed and widely used in various studies.
According to Dziak et al. (2020), several criteria in variable selection can be defined as a log-
likelihood function with a penalty known as the Information Criterion (ICs). The main objective of
ICs is to select a model that minimizes the value of

IC = =21+ Cyp (12)
where [ is the log-likelihood function of the model, C,, is a constant or penalty function whose type
depends on the ICs criteria used, n is the number of sample data, and p is the number of parameters
in the model (Dziak et al., 2020).

One type of IC widely used and has been widely developed is the Bayesian Information Criterion
(BIC). BIC is a criterion widely used in variable selection methods and focuses on models with low
complexity. BIC works by giving a high penalty to models with high complexity represented by the
number of parameters in the model so that it can reduce the potential for overfitting (Kasali &
Adeyemi, 2022). The penalty used in BIC, represented by C,, is the In(n) function (Dziak et al.,
2020). The BIC differs from other types of ICs, such as the Akaike Information Criterion (AIC),
which focuses on models with high accuracy, so selecting these two criteria is based on research
needs.

2.6. Evaluation Metrics

Evaluation metrics are measurement criteria that are often used to determine the level of accuracy
and feasibility of a model. One widely used evaluation metric is Root Mean Squared Error (RMSE).
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RMSE is a method used to measure a prediction model's accuracy level as a form of model evaluation
(Sanjaya & Heksaputra, 2020). RMSE calculates the average squared value of the number of errors
in a prediction model. The lower the RMSE value, the more accurate the prediction model produced.
The RMSE value is calculated by

1 -
RMSE = |-~ e (i — y)? (12)

where n represents the number of data, y; and 9; represents the actual and predicted value of the
response variable from the i-th observation.

In addition to RMSE, another widely used evaluation metric is the coefficient of determination
or R-squared (R?). R? is one of the widely used model evaluation metrics to measure the performance
of a prediction model. The R? value is used to measure the variance in the response variable that can
be explained by the model (Purwanto & Sudargini, 2021). The R? value ranges from 0 to 1, with the
higher the value, the better the model (Chicco et al., 2021).

3. STUDY AREA AND DATASETS

3.1. The Island of Borneo

Borneo, the third-largest island in the world following Greenland and New Guinea, is a critical
region for biodiversity and environmental science (Keong & Onuma, 2021). The island of Borneo
covers an area located between 4°S-7°N and 108°E-120°E, covering approximately 743,330 km? area
(Sa’adi et al., 2020). The island, situated in Southeast Asia, is divided among three countries:
Indonesia, Malaysia, and Brunei. The tropical equatorial climate of Borneo is categorized as tropical
rainforest (Af), with uniform temperature all year round. Precipitation is substantial, averaging over
3000 mm annually, and is distributed throughout the year, contributing to the island’s lush rainforests.
Borneo represents a critical region for both scientific inquiry and conservation efforts. Its rich
biodiversity, unique geological features, and significant environmental challenges make it a focal
point for research to understand and preserve one of the world's most important natural areas (Keong
& Onuma, 2021; von Rintelen et al., 2017).

2°N

EQ
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2°S

Palangkaraya

4°St o 100

108°E 112°E 116°E
Fig. 1. Map of the island of Borneo.

Kalimantan is the Indonesian portion of the island of Borneo, covering roughly 73% of the
island's land area. Kalimantan encompasses five provinces: West, Central, South, East, and North
Kalimantan, as shown in Figure 1. Each province has distinct geographical features, from the coastal
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plains of West Kalimantan to the rugged highlands of East Kalimantan. Kalimantan is highly prone
to fires due to natural and human-induced factors. These fires, often called "forest fires" or "slash-
and-burn” fires, have significant environmental, social, and health impacts (Harrison et al., 2024).
Fires contribute to significant deforestation, loss of biodiversity, and degradation of ecosystems.
Peatland fires release large amounts of carbon dioxide and other greenhouse gases, exacerbating
climate change (Palamba, 2024). Furthermore, smoke from fires causes severe air pollution, leading
to respiratory problems and other health issues for local communities and even affecting neighbouring
countries (Sambodo et al., 2024). Moreover, fires can damage crops, disrupt livelihoods, and incur
significant costs for firefighting and restoration efforts.

In the lush landscapes of Kalimantan, the natural causes of forest fires are an integral aspect of
the region's ecological dynamics. Forest fires in Kalimantan can occur due to several natural factors,
each contributing to the intricate fire ecology of this tropical environment. The natural factors
contributing to forest fires in Kalimantan are diverse and interconnected. Lightning strikes, land
cover, spontaneous combustion, and seasonal weather patterns all play roles in the fire ecology of this
region (Barros et al., 2021; Edwards et al., 2020). Understanding these factors is crucial for managing
and mitigating the impact of forest fires in Kalimantan. Natural variations in weather patterns, such
as El Nifio events, can significantly impact fire risks (Brasika et al., 2021; Nurdiati, et al., 2022a).
During EI Nifio years, Kalimantan often experiences prolonged dry periods, reducing soil moisture
and increasing the flammability of vegetation. These weather patterns create ideal conditions for fires
to ignite and spread, whether from natural or anthropogenic sources.

3.2. Sources and Types of Datasets

This study used hotspot data as an indicator of forest fire in Kalimantan. Hotspots are a crucial
indicator for monitoring and predicting forest fires in Kalimantan, as well as in other fire-prone
regions (Kadir et al., 2023; Usup & Hayasaka, 2023). In the context of forest fires, a hotspot refers to
a location with an unusually high surface temperature, which can be detected using remote sensing
technologies. These hotspots indicate areas where combustion or intense heating occurs, often
associated with fire activity. In Kalimantan, these hotspots typically emerge during drought,
exacerbated by various climatic phenomena.

Total precipitation is one of the factors that influences fire activity (Fanin & Van Der Werf,
2017). During months with below-average precipitation, the forest biomass becomes drier and more
susceptible to ignition. In Kalimantan, the relationship between precipitation and fire hotspots is
inversely correlated; the likelihood of fire hotspots increases as precipitation decreases. Conversely,
higher precipitation levels dampen the forest floor, reducing fire susceptibility. In addition to total
precipitation, precipitation anomalies are a climate factor that can significantly impact fire risk
(Nurdiati et al., 2022b). Precipitation anomalies refer to deviations from normal precipitation patterns.
During years of significant precipitation deficits (often linked to broader climatic trends), Kalimantan
experiences an uptick in fire hotspots. For instance, a negative precipitation anomaly can lead to
prolonged dry spells, creating ideal conditions for fire ignition and spread. Monitoring these
anomalies helps predict potential fire outbreaks, enabling timely intervention.

The number of dry days, called dry spells, is another critical factor in fire dynamics (Kumar &
Kumar, 2022; Najib et al., 2024). In Kalimantan, prolonged dry spells can dry out surface litter and
deeper soil moisture, making the region more susceptible to fire. Statistical analyses have shown that
fire hotspots are more prevalent during periods exceeding a certain threshold of dry spells,
emphasizing the cumulative effect of dryness.

The EI Nifio Southern Oscillation (ENSO) significantly impacts global weather patterns,
including Kalimantan. During El Nifio years, the region often experiences drier-than-normal
conditions, increasing fire hotspots (Najib et al., 2022a). The resulting drought stress on vegetation
heightens the risk of fires as lower humidity and higher temperatures prevail. Conversely, during La
Nifia events, increased precipitation typically reduces fire occurrences. Understanding ENSO patterns
aids in predicting fire risk and implementing pre-emptive measures. Elsewhere, the Indian Ocean
Dipole (10D) also plays a vital role in influencing precipitation patterns in Kalimantan. A positive
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IOD phase often correlates with drier conditions, further exacerbating the risk of fire hotspots
(Nurdiati et al., 2022a). Conversely, a negative 10D phase typically brings increased precipitation,
which can mitigate fire risk. The interplay between 10D phases and local climate conditions
underscores the complexity of fire dynamics in the region. Moreover, seasonality is another critical
factor in understanding fire hotspots in Kalimantan. The dry season, particularly from July to
September, often sees the highest incidence of fires (Najib et al., 2022b), coinciding with lower
precipitation and higher temperatures. Human activities, such as land clearing for agriculture, often
peak during this time, further increasing the risk of ignition.

The interplay of natural factors creates a complex web of influences on fire dynamics. The
relationship between fire hotspots in Kalimantan and natural factors like precipitation, climatic
indices, and seasonality is intricate and multifaceted. Understanding the interactions between these
factors is essential for effective fire management and conserving this vital ecosystem. In this study,
we used multiple sources of datasets for each variable ranging from January 2001 until December
2020. The hotspot data comes from the Indonesian Agency for Meteorological, Climatological, and
Geophysics, which is processed data from MODIS sensors of the Terra and Aqua satellites curated to
exclude false fire hotspots. Meanwhile, local climate data is obtained from CMORPH-CRT, and
global climate data is sourced from PSL NOAA. For more details, Table 1 briefly describes the
sources and types of data used.

Table 1.
Description of the sources and types of data used.
Variable Resolution | Source
Hotspots (Y) | Monthly, Retrieved from Indonesian Agency for Meteorological, Climatological and
0.25 x Geophysics
0.25
Total Monthly, Retrieved from monthly data of CMORPH_CRT datasets
Precipitation | 0.25 x https://ftp.cpc.ncep.noaa.gov/precip/PORT/SEMDP/CMORPH_CRT/DATA/
(Xq) 0.25
Precipitation | Monthly, Retrieved from monthly data of CMORPH_CRT datasets
Anomalies 0.25 x https://ftp.cpc.ncep.noaa.gov/precip/PORT/SEMDP/CMORPH_CRT/DATA/
(X2) 0.25
Dry spells Monthly, Retrieved and processed from daily data of CMORPH_CRT datasets
(X3) 0.25 x https://ftp.cpc.ncep.noaa.gov/precip/PORT/SEMDP/CMORPH_CRT/DATA/
0.25
ENSO index | Monthly, Retrieved from https://psl.noaa.gov/gcos_wgsp/Timeseries/Nino34/
(X4) time series
10D index Monthly, Retrieved from https://psl.noaa.gov/gcos_wgsp/Timeseries/DMI/
(Xs) time series
Seasonality Monthly Month of data
(X6)

Based on previous studies (Najib et al., 2021), it is well-established that precipitation predictors
derived from meteorological data significantly influence the occurrence and distribution of forest fire
hotspots in Kalimantan. These predictors capture the dynamic relationship between rainfall patterns
and fire activity, helping them to understand and potentially mitigate fire risks. Among these, three
predictors stand out due to their strong correlation with hotspot frequency: the two-month average
precipitation, the monthly precipitation anomaly, and the three-month number of dry days.

The two-month average precipitation, denoted as X;, represents the mean rainfall over the
observation month and the preceding month. This predictor provides a broader temporal context,
smoothing out short-term fluctuations and highlighting the cumulative precipitation available to
reduce fire risk. Lower values of X, are generally associated with drier conditions that can exacerbate
forest fire risks by reducing soil moisture and vegetation dampness.
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The monthly precipitation anomaly, referred to as X,, quantifies the deviation of rainfall during
the observation month compared to its long-term historical average, or "normal”. This measure serves
as a critical indicator of abnormal climatic conditions, such as extended dry spells or unusually wet
periods, which can influence fire susceptibility. To ensure clarity in this study, the term "precipitation
anomaly" is defined inversely to the typical interpretation: a positive anomaly value signifies a deficit
in rainfall relative to the norm, while a negative value indicates an excess of precipitation. This
reversed convention is intentional, facilitating a direct association between positive X, values and
increased fire risks due to insufficient rainfall.

Lastly, the number of dry days over a three-month period, labeled as X5, captures the cumulative
count of days with minimal precipitation, defined as less than 1 mm of rainfall per day. This predictor
spans the observation month and the two preceding months, reflecting extended periods of dryness
that are crucial for understanding fire dynamics. Prolonged dry periods, as indicated by higher X,
values, often lead to reduced soil moisture and increased flammability of vegetation, creating
favorable conditions for forest fires.

Together, these derived precipitation predictors form a comprehensive framework for analyzing
the influence of rainfall variability on forest fire hotspots. By capturing both temporal trends and
deviations from the norm, they provide valuable insights into the climatic drivers of fire activity in
Kalimantan, enabling more effective risk assessment and management strategies.

4. RESULTS AND DISCUSSION

4.1. Pre-processing of Datasets

In our quest to understand the dynamics of fire hotspots in Kalimantan, we begin by processing
satellite data in Table 1. This approach allows us to pinpoint specific grid points that are significant
to our study of fire incidents. Our research focuses primarily on lowland regions, such as Central and
Western Kalimantan, where fire occurrences are more frequent (Figure 2a and 2b). These areas offer
critical insights for effective fire management and climate studies. In contrast, regions with high
precipitation, such as the Malaysian part of Borneo, experience fewer fire hotspots and are therefore
not central to our analysis (Figure 2c). The abundant precipitation in these areas complicates the
correlation between climate data and fire events, so our research prioritizes the more fire-prone
lowland regions.

To focus on regions significantly impacted by fire incidents, we applied a k-means clustering
algorithm to identify grid points with the highest correlations to hotspot occurrences. This clustering
method grouped spatial data based on similarity in fire activity and climatic conditions, allowing us
to isolate areas most vulnerable to fire risks. Figure 2d illustrates the clustering results, highlighting
the critical grid points selected for further analysis. These areas, primarily in lowland regions of
Central and Western Kalimantan, were used to aggregate data for temporal modeling. By employing
k-means clustering, we ensured that the analysis targeted regions with consistent patterns of fire
occurrence, optimizing the model's ability to capture the relationship between climate indicators and
hotspots. This spatial pre-selection process reduced noise in the dataset caused by areas with low fire
activity or high precipitation, such as the Malaysian part of Borneo. The selected grid points were
aggregated into a time series format, enabling the study to focus on temporal dynamics while retaining
spatial relevance through targeted grid selection.

By aggregating the relevant grid points into a time series, we can effectively track fire
occurrences over time, identifying patterns and trends that emerge in relation to climatic variations.
This focused methodology allows us to disentangle the complex relationships between precipitation
and fire activity. Our satellite data processing aims to illuminate the region’s most vulnerable to fire
risks while acknowledging the intricate interplay of climatic factors. By concentrating on the low-
precipitation areas with high-fire incidents, we hope to provide valuable insights that inform targeted
interventions and enhance our understanding of fire dynamics in Kalimantan's unique environment.
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Fig. 2. Map of the island of Borneo showing: a) elevation, b) average annual hotspots, c) average annual
precipitation, and d) selected area using k-mean clustering.

4.2. Correlation Between Variables

In this section, we conduct a cross-correlation analysis between fire hotspots and climatic factors,
as shown in Figure 3. Our analysis reveals that the highest correlation with fire hotspots is observed
with the variable dry spells, yielding a correlation coefficient of 0.699. This strong positive correlation
suggests that prolonged dry conditions significantly increase fire occurrences. Additionally, we find
the highest correlation among the climatic factors is between total precipitation and dry spells, with a
coefficient of -0.876. This inverse relationship indicates that as total precipitation increases, the
frequency or duration of dry spells tends to decrease, which aligns with the understanding that wetter
conditions typically mitigate fire risk.

Given these correlations, the implications for predicting fire hotspots using climatic factors are
substantial. The strong correlation between dry spells and fire hotspots implies that monitoring and
forecasting dry conditions could effectively predict fire risks. In regions with anticipated dry spells,
proactive measures can be implemented to mitigate potential fire outbreaks. Furthermore, the inverse
relationship between total precipitation and dry spells emphasizes the importance of rainfall patterns
in fire prediction models. By integrating total precipitation and dry spells into predictive models, we
can improve the accuracy of forecasts regarding fire hotspots. Additionally, understanding the
interactions between these climatic factors—such as the influence of the ENSO and 10D indices—
can provide further insights into seasonal variations and long-term trends in fire occurrences.



161

Correlation Matrix

X1
0.8
X2 06
104
X3
10.2
X4 10
4-0.2
X5 0.296 0.291
X6 -0.299 0.390 0.408

y. 0.421 . 0.267 0.221 0.246

X1 X2 X3 X4 X5 X6 y

Fig. 3. Heatmap of cross-correlation analysis between fire hotspots and climatic factors.

4.3. Polynomial Features and Variable Selection

The weak linear relationship observed between the response variable and the predictor variable,
as shown in Figure 3, indicates that the data may not be suitable for input for a linear regression
model. This weak correlation can lead to a phenomenon known as underfitting, where the model fails
to learn and represent the underlying patterns in the data adequately. Consequently, adopting
alternative methods that enhance the model's ability to capture these subtle relationships becomes
essential. One such method is the application of polynomial features, as proposed by Maulud and
Abdulazeez (2020). This technique transforms the predictor variables by applying specific polynomial
degrees, thus generating additional predictor variables. The primary objective of this approach is to
increase the complexity of the model, enabling it to learn better and fit the weak linear relationship
between the response and predictor variables. The model can address the challenges posed by
underfitting by employing polynomial features, improving its predictive performance, and providing
a more accurate data representation.

In addition to the challenges of weak linear relationships, linear regression models struggle to
capture the interaction effects among variables directly. This is particularly relevant in the context of
this study, where the predictor variables consist of multiple climate indicators that typically interact
with one another. Adding additional predictor variables in the form of interaction terms becomes
necessary to address this limitation. According to Bertsimas and Wiberg (2020), incorporating
interaction variables can significantly enhance the model's ability to identify and learn from weak
linear relationships among the variables.

Considering this, this research integrates interaction terms as supplementary predictor variables,
aiming to effectively capture the interactions between climate indicators in predicting the number of
hotspots while simultaneously improving the model's accuracy. The addition of these interaction
variables is implemented through the polynomial features method. By applying polynomial
transformations up to a maximum degree of three, the analysis generates a total of seventy-seven
additional predictor variables, as detailed in Table 2. This strategic enhancement broadens the scope
of the model's input and allows for a more nuanced understanding of the interplay among climate
indicators, leading to more precise and reliable predictions.
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Table 2.
Additional predictor variables resulting from the application of polynomial features.
Type of Predictor Variable Number of Predictors Members of predictors
variables of degree 2 6 xZ,x2, ..., x2
variables of degree 3 6 x3,x3, .., %3
interaction variables 65 X1X2, X2X5, wur ) X1 X5Xg

The inclusion of additional predictor variables, as illustrated in Table 2, brings the total number
of predictor variables to eighty-three. This substantial increase in variable count can significantly
prolong the computational time required to develop an accurate predictive model. To address this
issue, a variable selection technique is employed to reduce the number of predictor variables,
streamlining the modelling process. The dataset must first be divided into training and testing subsets
before applying the variable selection technique to ensure a valid and reliable model evaluation. The
training data, covering the period from January 2001 to December 2018, is utilized for model
development, while the testing data, spanning from January 2019 to December 2020, assesses the
model's performance.

The selection of these specific time ranges is based on a series of experiments that explored
various proportions of data allocation. This approach led to the identification of the optimal division
that effectively balances the training and testing datasets. Ensuring that the training and testing periods
do not overlap, the model is evaluated on data it never encountered during training. This methodology
is essential for validating the robustness of the model's performance, as it allows for a more accurate
assessment of how well the model can generalize to unseen data. This strategic division enhances the
credibility of the results and contributes to a more reliable predictive framework.

Subsequently, all predictor variables in the training dataset are selected using the best subset
selection technique. This approach employs the Bayesian Information Criterion (BIC) as the metric
for determining the optimal combination of predictor variables. A lower BIC value indicates a better
model fit, which allows us to identify the most effective combination of predictor variables for
inclusion in the final model. The maximum number of predictor variables selected through this
technique is limited to ten. The results of the variable selection process using best subset selection are
visualized in a plot, as shown in Figure 4. This visualization clearly represents the selected variables
and their respective contributions to the model, facilitating a better understanding of the relationships
within the data. By employing this rigorous selection method, the model can achieve a more refined
and efficient representation of the underlying patterns, enhancing its predictive capabilities.

Figure 4 illustrates the ten combinations of predictor variables and their corresponding BIC
values. Each line in the plot indicates the selected predictor variables for each combination, with the
line length reflecting the order in which the variables were chosen. For instance, the combination
represented in the second row from the bottom, which yields a BIC value of -293.5739, includes the
variables x3 and x2.

The combinations with the highest BIC values appear at the bottom of the plot, while those with
the lowest values are positioned at the top. Consequently, the model that results in the lowest BIC
value is constructed from a combination of six predictor variables, as highlighted in Figure 4 and
presented in Eq. 13. This model achieves a BIC value of -307.6923, marking it as the best result after
conducting various iterations of the best subset selection process with different maximum numbers of
predictor variables.

The results from the best subset selection, indicated by Eq. 13, revealed a model comprised of
six terms in polynomial form, highlighting the interactions between precipitation anomalies (x,), dry
spells (x3), and the Indian Ocean Dipole (IOD, xs) index. This model illustrates the complex
relationships among these variables and their combined effect on hotspot occurrences. This finding
suggests that these three climate indicators strongly influence the number of hotspots in Kalimantan,
underscoring their critical role in environmental monitoring and predictive modelling.

y= Bo + .[?19533 + ﬁ2x32 + ﬁ3x3 + 349523532 + .gsxazxs + ﬁexzzxs (13)



163

(intercept)
X.X3
X.X3.2
X.X2.X3.2
X.X3.3
X.X5
X.X2.2.X5
X.X3.X5
X.X3.2.X5
X.X1.X3.X6
X.X3.2.X6

BIC -305.67 ‘ -307.69 -306.33

1 2 3 4 5 \_ 6 J 7 8 9 10

Model

Fig. 4. Results of variable selection using best subset selection.

A key takeaway from the analysis is the prominent role of dry spells as a significant predictor for
hotspots. Their presence in nearly every term of the equation underscores their critical influence on
environmental conditions that contribute to hotspot formation. Dry spells can exacerbate drought
conditions, reducing soil moisture and increasing the likelihood of fire events, leading to higher
hotspot counts. The interactions identified in the model further emphasize the importance of
considering how these factors interrelate. For instance, the impact of precipitation anomalies may be
modulated by the presence of dry spells, indicating that an increase in precipitation does not
necessarily mitigate hotspots if dry conditions persist concurrently.

This comprehensive understanding enhances predictive accuracy and provides valuable insights
for stakeholders involved in environmental monitoring and management. By recognizing the interplay
between these climatic factors, strategies can be developed to address and mitigate the risks associated
with hotspot occurrences, particularly in vulnerable regions.

4.4. Training for regularized regression and BMA models

The prepared data was subsequently utilized to develop a regression model based on Equation
(13) to predict the number of hotspots in Kalimantan. The first phase of model development involved
training the model using a training dataset. This training process encompassed several regression
models, specifically regularized regression techniques, including ridge, LASSO, and elastic-net
regressions, alongside a BMA approach based on polynomial regression.

4.4.1. Regularized Regression Models

The training of the three regularized regression models begins with determining the
hyperparameter values using a 10-fold cross-validation method. This approach is employed to identify
the best lambda values for the ridge and LASSO regression models, while alpha and lambda
hyperparameters are assessed for the elastic-net regression model. For the ridge and LASSO models,
a total of 100 lambda values are randomly sampled from the range 10710 to 10° for application in
the cross-validation process. In addition, the alpha value for the elastic-net model is determined by
randomly selecting 20 alpha values from 0 to 1. During this procedure, the best lambda is applied in
conjunction with each trial of alpha during cross-validation.

The selection of the best hyperparameters is based on the lowest Mean Squared Error (MSE)
observed during the validation process. The resulting hyperparameter values for alpha and lambda for
each regression model, derived from cross-validation, are summarized in Table 3. This systematic
approach ensures the models are finely tuned for optimal performance, facilitating more accurate
predictions in subsequent analyses.
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Table 3.
Optimal hyperparameter values used in each regularized regression model.
Regularized regression model alpha Lambda
Ridge 0* 0,01917910
LASSO 1* 0,03053856
Elastic-net 0,6841737 0,17868010

*This hyperparameter value is a fixed value.

The hyperparameter alpha values for the ridge and LASSO regression models, as indicated in
Table 3, are fixed at 0 and 1, respectively. This specific allocation signifies the contrasting nature of
these two regression techniques, with ridge regression favoring the inclusion of all predictors while
LASSO regression actively eliminates some, leading to sparse models. In contrast, the elastic-net
regression model employs an alpha value of 0.68, which is notably closer to 1, indicating a
predominant reliance on the LASSO mechanism. This suggests that while elastic-net incorporates
both ridge and LASSO elements, its behavior is more aligned with LASSO, thus promoting sparsity
in the coefficient estimates.

Moreover, the lambda values reflect the degree of regularization imposed on the coefficients of
each regression model. The elastic-net model exhibits the highest lambda value of 0.18, as presented
in Table 3, which is significantly greater than the lambda values of the ridge and LASSO models,
both of which remain under 0.05. This elevated lambda in the elastic-net model results in a more
substantial penalty on the coefficients, driving them closer to zero compared to those in the ridge and
LASSO models. Consequently, this pronounced regularization effect of elastic-net can lead to better
performance in scenarios where multicollinearity is present or when there are many predictors, as it
combines the strengths of both regularization techniques while managing to reduce overfitting
effectively. The interplay of these hyperparameters ultimately illustrates the nuanced approach of
elastic-net regression, making it a powerful tool for tackling complex predictive modeling tasks.

After determining the optimal hyperparameter values for alpha and lambda for each model, as
presented in Table 3, these values were subsequently utilized to train the three regularized regression
models for predicting the number of hotspots in Kalimantan. The resulting models included ridge
regression, LASSO, and elastic-net, each characterized by distinct intercepts and coefficients detailed
in Table 4.

Table 4.

Intercept and coefficient values for each predictor variable in the three regularized regression models.

. Regularized regression models
Coeficients Ridge LASSO Elastic-net
Bo -3556,39 -4110,76 -1888,26
B1 0,122 0,129 0,099
B> -11,50 -12,50 -8,51
B3 356,33 398,11 230,76
Ba 0,043 0,042 0,046
Bs -0,384 -0,386 -0,377
B 107,59 106,21 111,31

*Intercept and coefficient values for the best variable combination based on the results of best subset selection

in equation (13).

The results of the regularized regression analysis indicate that the absolute value of the highest

coefficient is attributed to the interception. This suggests a strong baseline level of prediction for the
model when all predictors are held constant at zero.

Among the predictor coefficients, the highest positive values are observed for B; and Ss.
Specifically, S5 representing the coefficient for dry-spells, underscores its significant influence on the
prediction of hotspots. This reinforces the finding that dry spells are critical factors contributing to
fire risks, as they can create conditions conducive to ignition and spread.
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In addition, 8¢ which captures the interaction between precipitation anomalies and the 10D index,
highlighting the importance of understanding how these two factors work together. This interaction
suggests that changes in precipitation patterns, influenced by 10D, can exacerbate or mitigate the
effects of dry spells on hotspot occurrences.

4.4.2. Bayesian Model Averaging (BMA) Model

The training of the BMA model, based on polynomial regression, begins by determining the
parameters of the BMA maodel, which consists of the coefficients and weights of the polynomial
regression model. Determining the polynomial regression model coefficients is done by generating
all possible polynomial regression models based on various combinations of predictor variables and
estimating the regression coefficients for each model. Six polynomial regression models are then
selected based on the lowest BIC (Bayesian Information Criterion) values, after which each model is
assigned, a weight representing the influence of the selected models on the final BMA model. Table
5 displays the interceptive values, regression coefficients, and weights for each selected polynomial
regression model, obtained from the BMA model training process.

Table 5.

Summary of the BMA model components along with their respective weights.
Coefficients Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
Bo -5426,87 -6250,85 -5853,77 -5258,17 -6764,41 -6181,12
B1 0,148 0,166 0,157 0,144 0,178 0,165
B> -14,88 -16,88 -15,98 -14,55 -18,20 -16,80
B3 497,45 567,61 537,13 485,77 614,88 564,54
Bs 0,039 0,00 0,042 0,044 0,00 0,00
Bs -0,391 -0,411 -0,214 0,00 -0,225 0,00
Be 103,05 109,05 0,00 0,00 0,00 0,00
Weight 0,405 0,254 0,147 0,094 0,066 0,034

Table 5 shows that each selected polynomial regression model has a different number of
predictor variables. Model 1 is the model that uses all the predictor variables and has the most
predictors, while Model 6 is the model with the fewest predictor variables, using only 3. Additionally,
it can be observed that the intercept and regression coefficient values for each selected model tend to
be small, with some coefficients approaching zero, similar to the regularization regression model.
Table 5 also displays the weights for each selected model, where the total sum of the weights equals
1. Model 1 has the most significant weight, with six predictor variables, indicating that this model
best explains the overall data. Therefore, Model 1 will influence the final BMA model the most.
Meanwhile, Model 6, with 3 predictor variables, has the most negligible weight, even below 5%.

All the selected polynomial regression models will be combined into a single final BMA model
based on the weights shown in Table 5. Table 6 provides detailed insights into the coefficients g of
the Bayesian regression model, describing the relationship between each predictor and the response
variable. The coefficient column represents the expected effect of each predictor on the response
variable. For instance, 35 has a coefficient of 530, suggesting that a unit increase in the corresponding
predictor is associated with an average increase of 530 units in the response variable. These
coefficients provide critical insights into the strength and direction of the relationships in the model.

The p # 0 column indicates the posterior probability that each coefficient is not zero. Predictors
Bi, B2, and S5 have p # 0 values of 100%, reflecting strong evidence of their significant impact on
the response variable. On the other hand, predictors such as 8, (64.6%) and S, (65.9%) exhibit lower
probabilities, suggesting weaker evidence of their relevance. These probabilities highlight the varying
levels of certainty about the predictors' importance within the model. Overall, Table 6 identifies f;,
B, and B5 as the most significant predictors due to their high posterior probabilities, making them
reliable contributors to the model. In contrast, B,, Bs, and S8, show weaker evidence for inclusion,
with lower probabilities, indicating higher uncertainty about their effects.
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Table 6.
Summary of the Bayesian Model Averaging (BMA) model.
Coefficient p!'=0 (%) EV SD Upper P1 (95%) Lower Pl (95%)
Bo 100 -5797 2038 -6069 -5525
B1 100 0.1558 0.02802 0.1521 0.1595
B2 100 -15.8 3.612 -16.3 -15.3
B3 100 530 151.2 510 550
Ba 64.6 0.02613 0.0232 0.02303 0.02922
Bs 87.2 -0.3088 0.1691 -0.3314 -0.2862
Be 65.9 69.41 58.9 61.56 77.26

The inclusion of 95% credible intervals and posterior probabilities enhances the interpretability
of the model, offering a comprehensive view of both the strength and reliability of each predictor's
impact. Eq. 14 represents the final BMA model obtained. It shows that in the final BMA model,
predictor variables are negatively and positively related to the response variable. These negatively
and positively related variables are consistent with those in the regularization regression model.

$ = —5797 + 0.16x3 — 15.8x2 + 530.03x5 + 0.03x,x2 — 0.32x2xs + 69.41x2x;  (14)

4.5. Testing and Evaluation of Models

Four models have been trained: the ridge regression model, LASSO regression, elastic-net
regression, and the final BMA model. The BMA model combines six selected polynomial regression
models, with each model weighed according to its performance. These four models were subsequently
tested using a separate test dataset. The purpose of testing the models is twofold: first, to evaluate the
models' performance when applied to data they have not encountered before, and second, to assess
the accuracy of each model in predicting the number of hotspots. This phase is critical in determining
how well the models generalize beyond the training data and their reliability in making accurate
predictions in real-world scenarios.

The performance of the four models was evaluated using two model evaluation metrics: Root
Mean Squared Error (RMSE) and the coefficient of determination (R?). RMSE indicates how close
the model's predictions are to the actual values, whereas a lower RMSE indicates better predictive
accuracy. On the other hand, R? measures the proportion of variance in the dependent variable that
can be explained by the model, with higher values indicating better explanatory power. Performance
measurement based on RMSE and R? was conducted on the training and test datasets. The best-
performing model was selected based on the lowest RMSE and the highest R? values. The RMSE and
R? values for all four models are summarized in Table 7.

Table 7.
RMSE and R-squared values on training and testing data for regularized regression and BMA models.
Model . RMSE _ _ R? (%) _
Training Testing Training Testing

Ridge 680,82 764,59 82,56 84,46
LASSO 680,04 752,31 82,6 85,06
Elastic-net 684,77 802,66 82,36 82,58

BMA 681,97 664,33 82,5 88,58

The values presented in Table 7 indicate no significant differences in RMSE and R? values across

the models when evaluated on the training data. However, these differences become more apparent
when assessing the models on the test data. The final BMA model achieved the lowest RMSE on the
test data, although this was not the case for the training data. Notably, the difference between the
RMSE values for the BMA model on the training and test datasets was the smallest among all the
models, suggesting that the BMA model is less likely to experience overfitting based on RMSE
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values. Furthermore, the BMA model also had the highest R? value on the test data, reaching 88.58%
and its R? value on the training data was also relatively high, at 82.5%. These R? values demonstrate
that the BMA model can explain approximately 88.58% of the variance in the test data and 82.5% of
the variance in the training data. Therefore, the BMA model outperforms the other three models and
is the best predictor of the number of hotspots in Kalimantan.

BMA demonstrates superior robustness and accuracy in predictive modeling, particularly on test
datasets, compared to regularization techniques such as Ridge, LASSO, and Elastic Net. Although
these regularization methods effectively prevent overfitting and improve model interpretability by
introducing penalties for complexity, they rely on a single model selection approach. This means that
their predictive performance is contingent on the specific model chosen, which may not capture the
full uncertainty inherent in the data. In contrast, BMA explicitly accounts for model uncertainty by
averaging over a set of candidate models, weighted according to their posterior probabilities. This
ensemble approach integrates information from multiple models, allowing BMA to leverage diverse
perspectives on the data. As a result, it tends to produce more stable predictions, especially in
scenarios where the underlying data-generating process is complex or not fully understood.

BMA incorporates prior information and allows for the inclusion of prior beliefs about model
parameters, leading to more informed predictions. This characteristic enhances its flexibility and
adaptability to various data distributions, improving its performance on unseen data. When
regularization methods may inadvertently select suboptimal models, BMA mitigates this risk by
pooling information across multiple models, thereby capturing a broader range of possible outcomes.
Furthermore, BMA's reliance on a probabilistic framework enables it to provide measures of
uncertainty alongside predictions, which is invaluable for decision-making in fields like
environmental science and resource management. By quantifying uncertainty, practitioners can make
more informed decisions based on the predicted hotspots for forest fires or other critical events.

While Ridge, LASSO, and Elastic Net may perform comparably during training, their single-
model focus can limit their generalizability. In contrast, BMA's ensemble approach, which averages
predictions across multiple models and incorporates uncertainty, enhances its robustness and
predictive accuracy on test datasets.

4.6. Results Validation and Simulation

To ensure the reliability and robustness of the BMA model, a comprehensive validation process
was conducted using climate data from 2021 to 2024. This step was critical to assess the model’s
performance on unseen data, ensuring its predictive accuracy and generalizability under varying
climatic conditions. The validation involved applying the trained BMA model to a new dataset, which
was processed consistently using the same methodology as the original dataset. Maintaining
consistency in data preparation ensured that any observed differences in performance could be
attributed solely to the model’s capabilities, rather than inconsistencies in data handling.

The validation focused on key climate indicators that significantly influence fire risks. One such
indicator was precipitation anomalies (x,), which measure deviations in rainfall from the long-term
average. This variable highlight unusual climatic conditions, such as abnormally dry or wet periods,
that can impact fire susceptibility. Another crucial indicator was dry spells (x3), defined as the number
of days with less than 1 mm of rainfall over a specific period. Prolonged dry spells are strongly
associated with heightened fire risk due to reduced soil moisture and increased vegetation
flammability.

In addition to these local climate variables, the validation also incorporated the Indian Ocean
Dipole (10D) index (xs), a large-scale climate indicator that measures differences in sea surface
temperatures between the western and eastern Indian Ocean. The 10D index has a well-documented
influence on regional weather patterns, including rainfall variability across Kalimantan. By including
this index, the BMA model was able to account for broader climatic drivers that impact local fire
dynamics. Pre-processed data, summarized in Figure 5, provides monthly data for three key climate
indicators over the period from January 2021 to September 2024: precipitation anomalies (x,), dry
spells (x3), and the Indian Ocean Dipole index (xs).
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Fig. 5. Pre-processed data for results validation, covering precipitation anomalies (x;),
dry spells (x3), and the Indian Ocean Dipole index (x5) from 2021-2024.

Notable dry periods with prolonged dry spells and negative precipitation anomalies occurred in
mid-2023 to end-2023, coinciding with positive 10D phases that exacerbate dry conditions.
Conversely, wetter conditions with positive precipitation anomalies and fewer dry days were observed
during 2022 and parts of 2024. The highest dry spell counts in mid-2023 and increasing dryness
toward 2024 highlight periods of elevated fire susceptibility. Using the trained BMA model,
validation data from 2021 to 2024 was employed to predict the occurrence of forest fire hotspots in
Kalimantan and the results can be seen in Figure 6.

Figure 6 displays the predicted number of forest fire hotspots in 2021 to 2024, modeled using
BMA. The black line indicates observed historical hotspot data, with a notable spike in late 2019
representing an extreme fire event. This historical pattern was likely used to calibrate its predictive
capabilities. Expected values (red line) represents the central predictions of the model for the number
of hotspots. It shows a generally low level of fire activity from 2021 to early 2023, with a clear upward
trend and peak in mid-to-late 2023. Uncertainty range (yellow shading) represents the 95% confidence
interval (ClI). This highlights the uncertainty in the model's predictions, widening significantly during
periods of high hotspot activity, such as the peaks in 2023 and 2024.
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Fig. 6. Predicted number of forest fire hotspots in 2021 to 2024, modeled using BMA.

Predictions suggest a stable and relatively quiet period in terms of hotspots during 2021 and 2022.
Starting in mid-2023, the model predicts an increase in fire activity, peaking in late 2023. These peaks
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are likely tied to climatic conditions, such as prolonged dry spells or anomalies in rainfall, which are
key predictors in the BMA model. During periods of low predicted activity (e.g., 2021-2022), the
confidence intervals are narrow, reflecting high model confidence. In contrast, during peak activity
(e.g., 2023-2024), the uncertainty widens, indicating the model’s acknowledgment of higher
variability and unpredictability under extreme conditions.

We compared our results with burned area data from SiPongi KLHK (see
https://sipongi.menlhk.go.id/). Table 8 shows burned area data from SiPongi highlights trends in fire
activity across Kalimantan provinces between 2019 and 2023. In 2019, the burned area reached an
exceptional total of 684,599 hectares, driven by extensive fires across Kalimantan, especially in
Kalimantan Tengah (317,749 hectares). This aligns with the observed spike in hotspots in the
historical data used for testing the BMA model. In 2020, the burned area dropped sharply to 26,286
hectares, reflecting a significant reduction in fire activity. This decrease is also reflected in the
dramatic reduction in observed hotspots. These trends validate the model’s ability to respond to
extreme events and to capture transitions between high and low fire activity periods.

Table 8.
Burned area data from SiPongi highlights trends in fire activity across Kalimantan provinces between
2019 and 2023.

Region 2019 2020 2021 2022 2023
Kalimantan Barat 151,919 7,646 20,590 21,836 111,848.4
Kalimantan Selatan 137,848 4,017 8,625 429 190,394.6
Kalimantan Tengah 317,749 7,681 3,653 1,554 165,896.4
Kalimantan Timur 68,524 5,221 3,029 373 39,494.4
Kalimantan Utara 8,559 1,721 1,678 370 796.4
Total (in hectares) 684,599 26,286 37,575 24,562 508,430.2

During 2021 and 2022, the burned area remained relatively low, at 37,575 hectares and 24,562
hectares, respectively. The BMA model's predictions for this period indicate relatively low numbers
of hotspots with narrow confidence intervals, reflecting strong confidence in its forecasts. This
alignment with SiPongi data demonstrates that the model effectively captures periods of reduced fire
activity, particularly under stable climatic conditions and low fire risk.

In 2023, a sharp increase in burned area is recorded, totaling 508,430 hectares. The most affected
provinces were Kalimantan Barat (111,848 hectares), Kalimantan Selatan (190,394 hectares), and
Kalimantan Tengah (165,896 hectares). Many recent studies have mentioned this fire incident in their
studies (Nurlatifah et al., 2025). Correspondingly, the BMA model predicts a significant rise in
hotspots for the same period, with notable peaks in expected values and wider confidence intervals.
This reflects the model's awareness of heightened fire risks, and the variability associated with
extreme fire seasons. The alignment between the burned area data and hotspot predictions in 2023
validates the model’s utility for forecasting high-risk periods.

Furthermore, we simulate the predictions of hotspots using the trained BMA model under neutral
and positive Indian Ocean Dipole (I0OD) conditions to reveal the relationship between predictor
variables x, (negative rainfall anomaly) and x5 (humber of dry days) with the predicted number of
hotspots. Figure 7 shows simulation results for various values of x, and x; under neutral Indian
Ocean Dipole (10D) conditions to predict hotspots in Kalimantan. Meanwhile, Figure 8 displays
simulation results under positive 10D.

Figure 7a illustrates how the number of hotspots increases as x; (number of dry days) rises from
25 to 60, under different fixed values of x, ranging from -5 to 5. A consistent trend is observed where
higher values of x5 led to a rapid increase in predicted hotspots, particularly when x5 exceeds 50. This
indicates that prolonged periods of dryness have a significant amplifying effect on fire activity.
Moreover, for any given x;, higher values of x, (indicating lower rainfall anomalies or drier
conditions) result in more hotspots. The steep increase in hotspots with both variables highlights the
compounded impact of extended dry periods and reduced rainfall on fire risk.
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Fig. 7. Simulation results for various values of x, and x5 under neutral Indian Ocean Dipole (I0D) conditions
to predict hotspots in Kalimantan: a) influence of x; on the number of hotspots under different fixed values of
X5, and b) influence of x, on the number of hotspots under different fixed values of x;.

Otherwise, Figure 7b examines the influence of x, on the number of hotspots while keeping x4
constant at values ranging from 40 to 60. For all x5 scenarios, the number of hotspots increases as x,
moves from negative (wet conditions) to positive (dry conditions). Notably, the rate of increase in
hotspots is steeper for higher x; values. For instance, at x; = 60, even a small shift in x, towards
drier conditions leads to a marked increase in hotspots, emphasizing the vulnerability of regions with
extended dry days to changes in rainfall anomalies.
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Fig. 8. Simulation results for various values of x, and x5 under positive Indian Ocean Dipole (I0D) conditions
to predict hotspots in Kalimantan: a) influence of x5 on the number of hotspots under different fixed values of
X5, and b) influence of x, on the number of hotspots under different fixed values of x;.

Under positive 10D, the value of x, and x5 generally above their normal conditions. Therefore,
the simulated range of x, and x5 will be limited to values above their normal.
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Figure 8a shows that as x5 increases from 40 to 60, the predicted number of hotspots rises
steadily for all fixed values of x,. This indicates that under positive IOD conditions, a longer duration
of dry days significantly escalates fire activity. The increase is more pronounced for higher values of
x, (representing lower rainfall anomalies). For instance, when x, = 5, the growth in hotspots with
increasing x5 is considerably steeper than for lower x, values, highlighting the compounded impact
of dry conditions and extended periods without rain. Otherwise, Figure 8b examines the impact of
x, on the number of hotspots for fixed x; values ranging from 40 to 60. The number of hotspots
increases as x, becomes more positive, with the rate of increase being greater for higher x5 values.
For example, at x; = 60, even small increments in x, lead to a substantial rise in predicted hotspots.
This result indicates that under positive 10D conditions, the combination of a higher number of dry
days and reduced rainfall intensifies fire risk more than each variable individually.

The simulations under both neutral and positive Indian Ocean Dipole (I0D) conditions provide
valuable insights into the relationships between the predictor variables x, (negative rainfall anomaly)
and x5 (number of dry days) and the predicted number of hotspots. These results highlight distinct
patterns influenced by different climatic conditions, which are crucial for understanding and
mitigating fire risks in Kalimantan. In both neutral and positive 10D conditions, the number of
hotspots consistently increases with higher x5, reflecting the significant role of prolonged dry spells
in intensifying fire activity. Under neutral 10D conditions, this relationship is evident but less
pronounced compared to positive IOD scenarios. Positive 10D conditions amplify the effect of dry
days, with hotspots increasing more steeply as x5 rises from 40 to 60. This suggests that during
positive 10D phases, the combination of regional weather patterns and longer dry periods creates a
more conducive environment for fires. Conversely, the simulations show that the number of hotspots
increases as x, becomes more positive (indicating lower-than-normal rainfall), with the effect being
stronger under positive 10D conditions. For fixed x5 values, higher x, results in a more rapid
escalation of hotspots, particularly when x5 is already elevated. This compounding effect of reduced
rainfall and extended dry periods underscores the critical importance of monitoring rainfall anomalies
in predicting fire risk.

The interaction between x, and x5 is particularly noteworthy. During neutral 10D conditions,
both variables influence the number of hotspots, but their combined effect is less severe compared to
positive IOD conditions. Under positive 10D scenarios, the simultaneous increase in x, and x5 leads
to a dramatic rise in predicted hotspots. For instance, when x is at its highest values (e.g., 60), even
small increments in x, can significantly amplify the number of hotspots. This highlights the
synergistic impact of these two variables during positive 10D phases, making such conditions
particularly dangerous for fire outbreaks.

These combined results underscore the heightened fire risk during positive 10D conditions due
to the stronger influence of both dry spells and rainfall anomalies. While neutral 10D conditions also
present fire risks, the amplified effect during positive 10D highlights the importance of tailored fire
mitigation strategies based on prevailing climatic conditions. Monitoring both x, and x5 is critical,
especially during positive 10D phases, as their interaction can significantly elevate fire activity.
Proactive measures, including early warnings and fire prevention efforts, should prioritize areas
experiencing prolonged dry spells and below-normal rainfall during these periods.

4.7. Discussion and Limitations of the Study

The findings underscore the practical utility of the BMA model for forest fire management. By
accurately predicting hotspots, this model empowers stakeholders to make proactive and data-driven
decisions to mitigate forest fire risks. For instance, the integration of climate indicators, particularly
dry spells and precipitation anomalies, enables the identification of critical periods when fire risks are
heightened due to prolonged dry conditions or abnormal weather patterns. This temporal framework
is crucial for optimizing the allocation of resources, such as positioning firefighting teams, enhancing
surveillance in high-risk areas, and pre-positioning water storage for firefighting.
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Furthermore, the model’s predictive capabilities can be integrated into early warning systems,
providing timely alerts to local communities and allowing for the implementation of preventive
measures such as controlled burns or the temporary suspension of activities like land clearing.

The ability of the BMA model to incorporate uncertainty into its predictions enhances its
robustness compared to single-model approaches. By providing probabilistic insights, the BMA
model enables stakeholders to assess the likelihood of fire outbreaks under different scenarios. This
is particularly important in a complex and dynamic environment like Kalimantan, where variability
in climate conditions can lead to unforeseen challenges. By quantifying these uncertainties, decision-
makers can implement risk-informed strategies, such as prioritizing areas with a higher probability of
fire occurrence while maintaining preparedness for lower-risk zones. This approach minimizes the
potential for over-preparedness, which could result in resource wastage, and under-preparedness,
which might exacerbate fire impacts. Ultimately, the BMA model equips policymakers and
environmental managers with a tool not only for accurate forecasting but also for devising flexible
and adaptive fire management strategies that can be dynamically adjusted as conditions evolve.

While the study demonstrates the effectiveness of the BMA model in predicting forest fire
hotspots based on temporal climate indicators, it does not incorporate spatial aspects into the
prediction framework. This limitation arises because the analysis focuses on temporal patterns, such
as dry spells, precipitation anomalies, and climatic indices, without accounting for the geographic
variability of these factors across Kalimantan. For example, regions with distinct ecological and
topographical characteristics may respond differently to the same climatic conditions, leading to
spatial heterogeneity in hotspot occurrences.

The absence of spatial considerations in the model implies that hotspot predictions are
generalized across the entire study area, potentially overlooking localized factors such as land cover
type, vegetation density, and proximity to human activities. Incorporating spatial data in future
studies, such as GI1S-based mapping or geostatistical models, could provide a more comprehensive
understanding of fire dynamics and improve the model's utility for targeted interventions. For
instance, spatially explicit models could help prioritize specific areas for monitoring or intervention,
based on both temporal and spatial risk factors.

5. CONCLUSION

The first objective of the study was to identify the best combination of predictors for forecasting
forest fire hotspots in Kalimantan based on climate indicators. The selection process aimed at
minimizing the Bayesian Information Criterion (BIC) value, ensuring that only the most relevant
variables were used. The research successfully used the best subset selection method, incorporating
three key variables: precipitation anomalies, dry spells, and the Indian Ocean Dipole (IOD) index,
into a mathematical equation consisting of six terms. The results showed that dry spells were a critical
factor in predicting the occurrence of fire hotspots, playing a role in almost every significant model
term. The use of polynomial interactions among these predictors allowed for a more nuanced
understanding of how climate variables interrelate in driving fire risks.

The second goal was to construct and compare multiple regularized regression models, including
Ridge, LASSO, and Elastic Net, with a BMA. The regularized regression models aim to address
common issues like multicollinearity and overfitting by introducing penalties for complexity. While
Ridge, LASSO, and Elastic Net performed adequately, the study found that these single-model
approaches had limitations, particularly in their ability to generalize well to new data. In contrast, the
BMA model, which averages predictions from multiple models weighted by their posterior
probabilities, offered a more comprehensive approach by integrating the benefits of various models
and accounting for the inherent uncertainty in the data.

Lastly, the study aimed to determine the best-performing model by evaluating the predictive
accuracy of each model using Root Mean Squared Error (RMSE) and the coefficient of determination
(R?). Testing on unseen data revealed that the BMA model outperformed all other models, achieving
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the lowest RMSE (664) and the highest R? (88.58%) on test data. The BMA model's ensemble
approach proved more robust, producing more accurate and reliable predictions, especially in the
complex, uncertain scenario of predicting hotspots. This makes BMA a valuable tool for forest fire
prediction, particularly in regions like Kalimantan, where climate conditions vary significantly.

The study's results offer promising prospects for implementing more accurate predictive models
in forest fire management in Kalimantan, particularly through the superior BMA approach over
regularized regression models. Its ability to forecast hotspots with high accuracy provides a strategic
advantage for early intervention, resource prioritization, and mitigation planning. For policymakers,
the model’s predictions can inform proactive measures, such as community evacuation plans, policy
adjustments regarding land use during critical periods, and optimizing budget allocation for
firefighting efforts. This enables policymakers to predict fire hotspots, paving the way more precisely
for effective preventive measures and improved early warning systems.

This study highlights the strength of using BMA for predicting forest fire hotspots based on
temporal climate indicators. However, it is important to acknowledge that the model's focus is limited
to temporal dynamics, without considering spatial variability in fire occurrence across Kalimantan.
This limitation restricts the model's applicability for geographically targeted interventions, which are
crucial for efficient resource allocation and localized risk management. Future research should aim to
integrate spatial data, such as land use patterns, vegetation types, and geographic features, to enhance
the predictive power and applicability of the model. Incorporating these spatial dimensions would
enable the development of a more holistic fire risk assessment framework, combining both temporal
and spatial predictors to better inform decision-making processes in forest fire management

Future studies could enhance this application by integrating real-time data streams, enabling
dynamic updates to risk assessments and further improving the practicality of the model in rapidly
changing environmental conditions. The BMA can also be extended to include a wider range of
models and not just focus on polynomial models. These models can be tree-based, non-linear, machine
learning, probabilistic models like Gaussian process, to neural networks. Moreover, further research
should explore incorporating additional climate-related variables and utilizing advanced remote
sensing technologies, as well as employing complex machine learning methods like deep learning.
Developing adaptive predictive models that account for dynamic climate changes and new variables,
such as land use effects, will be crucial for enhancing environmental management policies in
Indonesia and other tropical regions.
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