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ABSTRACT : 

This paper presents a method for identifying retention areas in forest stands using publicly available 

ALS (Aerial Laser Scanning) data. Retention areas/trees are the cause of large inaccuracies in 

compartmental timber volume calculations when updated with remote sensing data. Tree height was 

selected as the most explanatory parameter for identification. The calculation of the threshold value for 

each compartment was based on data from the FMS (Forest Management System) or on the evaluation 

of the statistical distribution of LiDAR data in the compartment. The calculation was applied directly 

to the 3D point cloud, where points with the corresponding height were classified and processed into 

the resulting vector layer. Both methods were tested and validated on a reference dataset. The statistical 

approach proved to be more reliable (OA 89%) due to frequent errors or outdated data in the FMS (OA 

82%). After removing dead retention trees (standing tree torsos) from the validation dataset, the OA of 

both methods increased (FMS approach 90%, statistical approach 94%). 
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1. INTRODUCTION 

With the increasing emphasis on biodiversity and sustainability, new approaches and practices 

have been introduced in various sectors. Forestry is undoubtedly one of them. As timber production 

can conflict with conservation objectives, a new concept of retention forestry (Beese et al., 2019) has 

been incorporated into the forest management system (Gustafsson et al., 2020). The aim is to promote 

biodiversity directly during timber harvesting. Retention is understood as a single tree or group of 

trees set aside in a logged area because it provides a home for different types of organisms (insects, 

fungi, etc.). They have become common practice in Scandinavian countries (Finland, Sweden, 

Norway) since the late 1990s and are included in national legislation and certification standards 

(Gustafsson et al., 2010).  

Since the forest fulfills multiple roles (productive, ecological) a long-term management plan is 

needed to enhance or preserve it. For more detailed planning additional forest stands stratification is 

done (PEFC, 2016). Those areas are called compartments and present relatively homogeneous areas, 

which are then managed separately to achieve specific goals. For each compartment, a detailed 

description is provided including information about age, area, forestry objective, tree species 

distribution, volume, etc. These days, compartments are usually constructed with the usage of remote 

sensing data such as aerial or satellite images (Poso et al., 1987). 
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Forest inventory and monitoring benefit from new technologies. These make it possible to cover 

large areas and obtain important information on forest stands or even individual trees with less cost 

and effort required by traditional methods. An example of these technologies is Light Detection and 

Ranging (LiDAR, Pitman et al., 2004; Wandinger, 2005). Its ability to penetrate the tree canopy 

makes this technology almost ideal for forest mapping. There are multiple areas in forestry where 

LiDAR data are used these days. One of those is forest inventory and monitoring which usually 

incorporate techniques for tree detection, and calculation of their characteristics like height, volume 

(Hyyppa et al., 2001; Popescu et al., 2003; Andersen et al., 2004; Dalponte et al., 2016; Cao et al., 

2016), or species classification (Heinzel et al., 2011; Yao et al., 2012). Other areas like forest ecology 

are interested in deriving information about biomass (Zhao et al., 2009; Gleason et al., 2012) or forest 

canopy structure (Zhao et al., 2011; Wang et al., 2008). Harvesting operations can also benefit from 

LiDAR-derived DTM that can be utilized as input for routing of forwarders (Holmström et al., 2023) 

or optimization of landings (Flisberg et al., 2022) to improve work efficiency and minimize 

environmental impact. 

 Regarding the tree parameters that can be derived from LiDAR data, two main approaches are 

usually distinguished: ABA (Area Based Approach) which is an estimate of selected parameters in 

some aggregation unit, and ITD (Individual Tree Detection) where all trees are tracked individually. 

Various techniques are utilized for ITD, such as the Watershed algorithm (Wu et al., 2019) and 

methods using Local Maxima Identification (Hyyppa et al., 2001), Polynominal Fitting Method (Cao 

et al., 2016), Individual Tree Crown Segmentation (Dalponte et al., 2016), and Point Cloud 

Segmentation (Li et al., 2012). Other methods use deep/machine learning (Chen et al., 2021) or graph 

theory (Strîmbu et al., 2015), or a combination of those methods where the result of one method 

serves as input into another (Wu et al., 2019). 

 Only a single study (Hardenbol et al., 2022) so far has dealt with the identification and 

classification of retention trees. The study used the ITD approach to identify and classify retention 

trees on ALS (Aerial Laser Scanning) data with a density of 5 points/m2 in combination with not 

rectified CIR (color-infrared) aerial images in Finland. The basis of the ITD was CHM (Canopy 

Height Model) smoothing and local maxima detection in moving fixed size window. Then, tree crown 

boundaries were identified with the Watershed algorithm, and a height threshold was applied to keep 

only retention trees. The study reached a detection rate of 83.8% for living trees and 41.7% for dead 

trees.  

This paper presents novel methods to identify retention areas using low-resolution ALS (Aerial 

Laser Scanning) data with a density around 2 points/m2. Two methods are presented and evaluated. 

Both are based on ABA since forest retention is not only consisting of selected trees left after harvest 

but also complete small intact forest areas (Gustafsson et al., 2020). The objective of the presented 

work was:  

 i) to create a solution for identifying retention areas from publicly available data 

ii) solution must be suitable for large areas using standard hardware 

Currently, no dataset on retention areas is publicly available, although they can be beneficial for 

biodiversity applications and increase data accuracy in the forest management system. These systems 

typically include dominant tree height values at the compartment level, and retention areas can 

strongly influence them since the retention is usually much higher than the productivity layer. 

2. DATA AND METHODS 

2.1 Used data 

Because of availability, sufficient detail, and coverage, publicly available LiDAR dataset from 

Lantmäteriet (https://www.lantmateriet.se/) was used as source data. Dataset covers the whole of 

Sweden with a minimum point density of 0.5 points/m2 for all scanned surfaces and a minimum point 

density of 1.0 points/m2 in forest areas, decreasing to 0.25 points/m2 in bare mountains.  
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The height of flight from which scanning was realized ranged from 1700 to 2300 m above sea 

level (4000 m in mountains). The data acquisition was performed with a maximum scanning angle of 

±20° and a lateral overlap of 10 to 20%.  Absolute positional accuracy for open flat hard surfaces was 

0.1 m in height and 0.3 m in plane. The data come pre-processed and classified into four categories 

(land, water, bridge, unclassified) and follow the SS-EN ISO 16157:2013 standard Geographic 

information - Data quality (Lantmäteriet, 2022). 

Two areas (AOI 1, AOI 2) in Sweden (Norra Sverige, Dalarnas Län) were selected for testing 

the approach (Fig. 1). Both together cover approximately 250 km2 and contain approximately 900 

forest units less than 30 years old (see Table 1 for more detailed information) which in total covers 

around 55 km2. The main reason for age restriction is the fact, that retention forestry was implemented 

in the early 1990s, and therefore is no sense in processing older data. The point density was 

approximately 2.7 points/m2 for both selected areas thus adequate for tree detection (Kaartinen et al. 

(2012) state sufficient point density for grown-up trees as 2 p/m2). 

 

 

Fig. 1. Map of selected test areas. 

                                                                                        Table 1.  

Test area basic information. 

 
 AOI 1 AOI 2 

Area size (km2) 78 km2 189 km2 

Number of compartments 249 668 

Compartment coverage (km2) 22.7 34.5 

Mean compartment size (km2) 0.07 0.05 

Year of sensing 2021 2020 
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2.2. Retention areas identification 

To stratify the forest, forest compartments were used to divide the forest into relatively 

homogeneous areas. The main assumption of the presented approach was that trees in 

retention areas should be significantly higher than other young trees in the forest 

compartment (production layer). Therefore, a simple height threshold for the whole 

compartment was defined to detect retention. To ensure that all retention trees are 

significantly taller than the production layer and thus identifiable in the LiDAR data, only 

stands younger than 30 years were selected. Two different approaches were then used 

(described in the processing section) and the results were validated.  

It was decided to implement both approaches directly on the point cloud data (Fig. 2) 

instead of using techniques to identify retention on the CHM (Canopy Height Model) 

(Hardenbol et al., 2022). The main reason was that the point cloud data allowed us to obtain 

the number of points in each cell and thus omit cells with significant enough height but low 

point counts. These could potentially also be retention regions but with much lower 

reliability resulting from the low number of laser pulse measurements.  

The whole calculation process was implemented in Python 3.10.8 

(https://www.python.org/) with the libraries Numpy 1.22.3 (https: //numpy.org/), Laspy 

2.3.0 (https://laspy.readthedocs.io/), GDAL 3.5.1 (https://gdal.org/), Shapely 1.8.2 

(https://shapely.readthedocs.io/), and PDAL 3.1.2 (https://pdal.io/en/latest/). The first step 

of the workflow is to crop the LiDAR point cloud data to the extent of the given forest 

compartment or another stratification layer to assure some level of forest homogeneity . The 

compartment geometry was converted from ESRI Shapefile to JSON format  to be readable 

by the PDAL library. Then, for all points, the Z coordinate values were normalized to HAG 

(Height Above Ground) based on the distance of a particular point from the ground . The 

ground was interpolated from points classified as ground. The next step was classifying 

points representing retention. For this purpose, minimum tree height thresholds were 

calculated separately for each forest compartment.  Two methods were used. The first one 

used data from the forest management system and was based on the information of the 

expected DOM (DOMinant tree height) in the forest compartment. Based on interviews with 

expert forest managers, it was decided to calculate the threshold as the expected DOM + 

70%. DOM itself is usually calculated as the average height of the trees with the largest 

diameter at breast height (Kangas et al., 2011). The 70% enlargement should guarantee that 

all trees higher than that are true retention. 

The second method was based on a statistical approach whereby retention was 

identified by statistically different heights compared  to other points in the compartment that 

were not classified as ground. To deal with the possible different distribution of data in the 

compartments, the height values (x) were transformed into z-score values with the usage of 

PDAL filters.assign function which enables setting the filtering rule for a specific 

dimension of the point cloud that is applied to all points parsed as input to the function. 

The nature of the z-score implies that a higher value means that the value is less likely to 

come from a chance. Therefore z-score (Z) values greater than 3 (p-value = 0.0013) were 

considered statistically significant differences (three standard deviations (σ) away from the 

mean (µ)) and classified as potential retention: 

 

𝑍 =
𝑥−µ

𝜎
                                                             (1) 

where: 

Z = the z-score 

x = the height values 

µ = the mean 

σ = the standard deviations 
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This approach was chosen to evaluate the possibility of identifying retention areas in 

localities where forest management system DOM heights are not available.  

Right after, points assigned to the retention class were converted into a two-band raster 

with a 2 m cell size (band 1: maximum height; band 2: number of points). With these data, 

a new Boolean raster was created (1: retention; 0: other). The number 1 was assigned to 

cells whose values were calculated from a sufficient number of points ( at least 4 in a cell) 

or had a sufficient HAG value relative to the other retention areas in that compartment .  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Process schema. 

In the last step, the Boolean raster was polygonized, and the following polygons were 

adjusted:  

1) polygons smaller than 4 m2 were removed to prevent false positives originating from 

overgrown vegetation (solo branches, etc.) or noise in the data ; 

2) polygons touching the forest compartment boundary were marked, to avoid errors 

originating from the boundary imprecision; 

3) polygons that could potentially be solo trees were marked, based on the maximum 

area of the retention polygon and similarity to a circle  (Fig.3). The area threshold 

was set to 160 m2 = 40 pix (approximately the area of the crown with a 7 m radius). 
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If the polygon satisfies the area condition a circle similarity was evaluated. The area 

of a circle with a diameter equal to the polygon’s maximum distance was compared 

with the retention polygon area (the polygon must cover at least 65 % of the circle) . 

 
2.3. Validation 

Validation was based on orthophotos with 16 cm GSD (Ground Sample Distance) 

acquired in the summer of 2022. Despite the problems arising from the time lag, these data 

are the most recent data suitable for validation. Given that field measurements from 2023 

would extend the time gap. Prominent retention trees standing in  cleared areas or among 

young/low vegetation were marked by visual inspection in  both areas and divided into two 

classes (tree, dead tree). All trees without green branches or withou t visible branches at all 

were considered dead since the orthophotos were captured in the middle of vegetation 

season. Tree shadows were very useful in this case, as can be seen in  Figure 4. Marking of 

reference trees was done before the retention areas processing, therefore the reference 

dataset was not influenced by prior knowledge of the process result.  

 

Fig. 3. Retention polygons comparison to area of circle where diameter is equal  

to maximum distance in given polygon. 

 
Because of imprecision in compartment borders, all retention  areas intersecting the 

border were not marked as a reference. Those areas were also removed from the outputs of 

both approaches. Polygon identification was used for a group of trees, otherwise, a point 

symbol was added. A straightforward validation method was then used: if the reference 

point feature laid within the retention polygon, then it was identified as correctly identified. 

In the case of reference polygons, the area coverage was compared. If the reference polygon 

was at least 80% covered by the retention polygon, it was considered correctly identified. 

In total, 874 reference points (790 trees; 94 torsos/dead trees) and 36 reference polygons 

were collected, covering a total area of 0.053 km2.  

To evaluate the accuracy in greater detail, and calculate omission and commission 

errors, four compartments were selected in which all the retention trees were marked (based 

on orthophotos). Compartments were selected by the possibility to mark all retention with 

high certainty, also not to interfere with previously marked reference trees. In total, 89 

additional trees were marked. 
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3. RESULTS  

Firstly, an overall statistical evaluation of results coming from both approaches was 

done (Table 2). Mean and median values were very similar for both areas. There was a 

difference in max coverage value in both areas (more significant in Area 1). Overall 

statistical parameters were calculated in relation to compartments  (Table 3). Approaches 

reached very similar mean retention coverage in compartments in both test areas (a round 

18% in AOI 1, and 10% in AOI 2). The major difference was identified in the maximum 

retention coverage in the compartment achieved by Approach 1 (used height threshold from 

FMS). This problem originated from data in FMS. A more detailed investigation  was done 

in areas that were almost fully covered by retention identified by Approach  1, but Approach 

2 (height threshold based on the statistical difference) did not identify any retention in those 

areas. This occurred only three times and was due to areas that had already been logged but 

were still fully grown forests on the LiDAR data. As can be seen in  Table 2, Approach 2 

in both areas delivered much more stratified results as can be derived from a higher number 

of identified retention areas, and lower mean and median values of area size. Despite that, 

the overall identified area was very similar for both approaches.   

The next phase was validation with reference data collected from orthophoto images, 

see Section 2.3. The results are provided in Table 4. When all reference trees were included, 

Approach 1 showed an OA (Overall Accuracy) of 82 % and Approach 2 had an OA of 90%. 

Removal of trees classified as torsos/dead resulted in an improved overall accuracy of 89 

% with Approach 1 and 94 % with Approach 2. The reason for that could be that the dead 

trees were quite often just torsos without branches therefore much smaller targets to be hit 

by a laser pulse. 
                                                                                                                     Table 2. 

Overall statistical parameters of identified retention areas  

(all retention polygons smaller than 4m 2 were removed). 

 AOI 1 AOI 2 

Approach 1 Approach 2 Approach 1 Approach 2 

Max (m2) 133300 12652 54180 18540 

Mean (m2) 164 117 138 120 

Median (m2) 44 40 52 44 

Count 13380 17227 19519 23057 

Total (km2) 2.23 2.25 2.68 2.78 

                                                                                                                      Table 3.  

Overall statistical parameters of retention tree coverage for single compartment. 

 AOI 1 AOI 2 

Approach 1 Approach 2 Approach 1 Approach 2 

Min (%) 0.08 0.00 0.00 0.00 

Max (%) 0.93 0.53 0.64 0.78 

Mean (%) 0.17 0.18 0.10 0.09 

Median (%) 0.10 0.13 0.06 0.07 

                                                                                                                                         Table 4.  

Retention tree identification overall accuracy . 

  Approach 1 Approach 2 

Tree count Detected OA Detected OA 

Covered reference trees (all)  873 724 0.82 786 0.90 

Ref. trees (no dead) 789 704 0.89 748 0.94 

Figure 4 shows in a sample the result of the comparison between the retention areas 

(left) and solo retention trees (right) manually marked and retention layer. 
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Fig. 4. Comparison of retention areas (left) and solo retention trees (right) manually marked and retention layer 

produced by presented approaches. 

Based on the results given in Table 5, evaluating the accuracy of approaches in selected 

compartments, Approach 1 was more vulnerable to omission error.  
Table 5. 

Evaluation of error in compartments where all retention trees were marked as reference. 

Approach 1 
Number 

of trees 

Correct False 

Positive 

Commission 

error 

False 

Negative 

Omission 

error 

Compartment 1 33 31 1 0.03 2 0.06 

Compartment 2 26 23 3 0.12 3 0.12 

Compartment 3 17 15 0 0 2 0.14 

Compartment 4 13 10 2 0.15 3 0.23 

Total 89 79 6 0.08 10 0.14 
 

Approach 2 
Number of 

trees 

Correct False 

Positive 

Commission 

error 

False 

Negative 

Omission 

error 

Compartment 1 33 31 4 0.12 2 0.06 

Compartment 2 26 25 5 0.19 1 0.04 

Compartment 3 17 16 0 0 0 0 

Compartment 4 13 11 4 0.30 2 0.15 

Total 89 83 13 0.15 5 0.06 

 

The main factor was most probably the threshold coming from FMS, therefore there was no 

direct relation to the data itself. As opposed to that Approach 2 resulted as more vulnerable to 

commission error. One possible explanation of the commission seems to be that trees fell in the time 

gap between orthophotos and LiDAR data capture. On multiple occasions, there were fallen 

trees that were still identifiable in LiDAR data but not marked on orthophotos (see  Fig. 5). 
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Fig. 5. Commission error caused by trees fell between LiDAR data and orthophoto images. 

Overall, (see Fig. 5) both retention area identification approaches delivered very 

similar results in many cases. This applies mostly to solo standing trees and dense groups 

of trees. The most divergent results were in areas of sparse retention vegetation areas inside 

clear-cut areas. Approach 1 with the threshold from FMS found only the taller trees in the 

area, while Approach 2 included also the lower part of the vegetation. This behavior was 

the result of differences in the bases of both applied approaches  (Fig. 6). 

 

Fig. 6. Comparison of results of both presented approaches. 
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4. DISCUSSION  

According to Table 4 and Table 5 given in the Results section, both proposed approaches 

achieved encouraging results despite some limitations. As was already mentioned, approaches 

were applied for forest stands younger than 30 years, where a significant difference in 

height between the production layer and potential  retention is expected. Applying the same 

methods for older forests might result in an increased error therefore threshold calculation 

methods should be modified to minimize this. Also, a forest compartment layer is required 

on input. Such a layer is standardly available in forest management systems in countries all 

over the world. In case the forest compartment layer is not available, another stratification 

layer needs to be calculated (e.g. Watershed (Vincent et al., 1991), thresholding (Davis et al., 

1975), region or edge-based methods (Gould et al., 2009; Wani et al., 1994; Fan, 2010; 

Angelina et al., 2012), etc.) and provided as input to the process.  

To evaluate the robustness of the process a larger dataset covering more heterogeneous 

areas could be used. The validation results can be partly influenced by  errors arising from 

reference data manual collection on orthophotos  as mentioned in previous sections. Instead 

of them, precisely measured field data could be used, e.g.  by applying GNSS Real-Time 

Kinematic (RTK, Teunissen and Motenbruck, 2017) or a similar approach for highly 

accurate positioning. Acquisition of both reference and ALS datasets should be done in  a 

similar time period to capture the same situation in fores ts. 

So far, only the Hardenbol et al. (2022) study dealt with the identification of retention trees. 

Their method was built on the ITD approach. In contrast to that, our methods utilize the ABA 

approach to minimize errors originating in not finding all individual trees in a scene, which 

could be challenging even with high-density LiDAR data. The ABA approach is also more 

in accordance with the goals of this paper, to identify the area covered by retention instead 

of identifying each retention tree likewise to keep the processing more computationally 

efficient. Our approaches were applied to sparser point cloud data than in the mentioned 

study and also did not use any additional remote sensing data. As well as in Hardenbol et 

al. (2022), dead trees, which are very difficult to detect with lower point cloud densities, 

had a significant effect on the accuracy of the presented approaches.  

 

 

5. CONCLUSION 

 

Information about retention areas in forest compartments is needed for a better 

understanding of overall forest conditions and for more precise forest management 

planning. The study presented two novel ABA methods for retention areas identification 

based on a low-density LiDAR point cloud from ALS. Both methods are easily applicable 

for computation over large areas while using a standard personal computer. During the 

validation, both proposed methods delivered promising results with 82% overall accuracy 

delivered by the first approach based on FMS data on input and 90% by the second approach 

based on statistical differences in height. As the second approach delivered slightly better 

performance and does not require additional data on the input, it can be recommended in 

overall.  Since data from ALS with needed point density are publicly available in many 

countries over the world, there are no inhibitions present to apply the described methods 

for the creation of national retention areas datasets.  
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