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ABSTRACT: 

One of the main natural disasters that has an impact on the environment and economy of nations 

throughout the world is drought. It has an impact on the local vegetation's state. The study's main goal 

was to look for years of severe drought by looking at Thailand's Eastern Economic Corridor (EEC). To 

determine the vegetation condition in the research area between 2017 and 2021, the Normalized 

Vegetation Index (NDVI) from Terra/MODIS data was employed. The area with the NDVI difference 

from the average value of NDVI during the same time period was examined using the Standardized 

Vegetation Index (SVI). Through the vegetation index, the drought can be reflected in this. According 

to the study, the highest drought area covered an area of 216.36 km2 in 2017. This was followed by 

years 2019 and 2020, which each covered an area of 212.65 km2, 211.23 km2, 197.09 km2, and 178.07 

km2. Additionally, a statistical analysis of the monthly correlation between the SVI (independent 

variable) and rainfall (dependent variable) over the course of the five years revealed that the coefficient 

of determination R2 was 0.8018 in 2020, 0.6819 in 2021, 0.6262 in 2017, 0.5772 in 2018, and 0.5108 

in 2019. The methodology can be obtained and used by other departments to assess and forecast 

drought in other regions of Thailand and other nations. 
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1. INTRODUCTION 

One of the worst weather-related catastrophes is drought. For drought management, accurate 

information about its length, spatial coverage, intensity, and impact is crucial. Especially in the 

agricultural sector, droughts frequently result in the loss of livelihoods along with various negative 

environmental effects (Willibroad & Sang-Il, 2019; Abbas et al., 2022). Identification of drought 

trends could be utilized as a strategy for monitoring and sustainable management because marshes 

and vegetation next to inland water bodies depend on the water supply within their ecosystem 

(Villarreal et al., 2016). A drought was a natural water shortage brought on by erratic and delayed 

rain. Devastated crops, starvation, conflicts, and wars are a few effects of drought (Su et al., 2017). 

When the demand for water exceeds the supply, a drought occurs. It is believed that among all 

dangers, natural disasters have the greatest effects on people (Qin et al., 2021). That had an impact on 

lifestyle and the global economic system, with emphasis on Thailand (Gomasathit et al., 2015). 

Therefore, it is crucial to consider rainfall while looking for relationships between it and the spectral 

index. Additionally, the correlation between rainfall and the spectral index is a key metric for 

identifying drought zones in order to analyze the length of rainfall that impacts vegetation (Rimkus 

et al., 2017). Rainfall was the primary source of the drought in Thailand, which had been an ongoing 

issue, particularly in the northern east and western south. Every year, there has been a lack of rain, 

especially from winter to summer (Thai Meteorological Department, 2021). Although drought is not 

a new problem, it recurs every year, particularly in the north and east of the country. Low precipitation 

levels, which frequently recur every cold season until hot season, are the main cause of drought. Water 

scarcity has an impact on vegetation phenology, which will then reveal the amount of drought severity 

(Laosuwan et al., 2016).  
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Modern and cutting-edge technology, remote sensing is particularly useful for predicting natural 

disasters including flooding, drought, sea level rise, changes in land use and cover, and so forth 

(Uttaruk & Laosuwan, 2017a). Remote sensing-based indices frequently make use of observations 

from a variety of spectral bands, each of which offers a unique perspective on the surface's state at 

various periods. Standardized Vegetation Index (SVI) and Normalized Vegetation Index (NDVI) are 

two remote sensing-based indicators (Rotjanakusol, T. & Laosuwan, 2018; Buma & Sang-Il, 2019). 

Data from satellites that have undergone image processing and mathematical calculations will clearly 

show the study's specifics. For instance, the NDVI is determined by the variations in red and near-

infrared wavelengths (Kaspersen et al., 2015; Ganie & Nusrath, 2016). To determine the state of the 

vegetation in the research area, NDVI from MODIS data was employed. The area with the NDVI 

difference from the average value of NDVI over the same time period was also examined using SVI. 

Through the vegetation index, the drought can be reflected in this. The study has used an analysis 

technique to determine how a drought develops through time and space. Effectively identifying the 

origin and type of drought was possible thanks to several satellite photos collected from MODIS data. 

The preparation of the drought mitigation in the area for the concerned agencies will benefit from 

this.  

In addition, the SVI, which is based on calculations from 16-day NDVI data, represents the 

possibility of vegetation condition deviation from normal. The goal of this work was to standardize, 

by time of year, the NDVI to enhance drought-monitoring techniques. For the three provinces or 

Eastern Economic Corridor (EEC) of Thailand, the study used series of MOD13Q1 MODIS satellite 

pictures over a 5-year period (2017, 2018, 2019, 2020, and 2021), (Fig. 1). 

 
Fig. 1. The study area: Eastern Economic Corridor of Thailand (EEC). 
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2. STUDY AREA  

The well-known Eastern Seaboard Development Program, which has supported Thailand as a 

driving force for industrial output in Thailand for more than 30 years, is being revitalized and 

enhanced as part of the Thailand 4.0 scheme's EEC development plan. The Eastern Economic 

Corridor Office of Thailand (the EECO) has been tasked with leading the nation's investment in 

advancing innovation and cutting-edge technology for the next generation under this program. 

Thailand's investment in the region's physical and social infrastructure will significantly advance and 

change under the direction of the EEC Development Plan. The first focus of the EEC project will be 

on three eastern provinces: Chachoengsao, Chonburi, and Rayong (Fig. 1). The EEC is 120 km east 

of Bangkok, and covers an area of 13,418 km2 with geographical location between 12°30’0’’N to 

14°0’0’’N and 100°30’0’’E to 102°0’0’’E. In terms of climate characteristics, the region 

experiences a tropical monsoon, with sea breezes blowing all year round. The temperature is 

moderately warm. Rainfall is heavy from May to October every year in the cool coastal regions during 

the rainy season. With an approximate elevation of 1,050 meters above mean sea level, it is primarily 

covered by mountainous terrain. 

3. DATA AND METHODS 

3.1. Data from Terra/MODIS satellite  

Data on natural resources will be monitored and examined by the Terra/MODIS satellite. With a 

spatial resolution of 250 to 1,000 meters and 36 spectral bands, the sweep width is approximately 

2,330 kilometers. Within two days, the Terra/MODIS satellite collects worldwide digital data. 

Terra/MODIS data (Buma & Sang-Il, 2019) are therefore suitable for tracking spatial changes that 

are widespread. The MOD13Q1 product (h27v07), whose NDVI data sets covered the period from 

2017 to 2021, was used in this study. Data collected in each month of the years 2017, 2018, 2019, 

2020, and 2021 are used to create the MOD13Q1 data. WGS84-UTM zone 47N coordinates will be 

used for geometric adjustment. The closest neighbor method will be used to evaluate pixel locations, 

and a subset of satellite data will be created that solely includes the provinces of the EEC.   

 

3.2. Data from rainfall and temperature  

In order to establish the temporal association with the SVI mean, the average monthly rainfall 

data for the years 2017, 2018, 2019, 2020, and 2021 was used. For data collection, only Thai 

Meteorological Department (TMD) ground stations that monitor rainfall in the eastern region were 

utilized. Procedures of data analysis are determined in a logical order for analyzing drought in Rayong 

province (Fig. 2). 

 The vegetation condition in the study region has been determined using the NDVI acquired from 

the MODIS data. Additionally, the SVI was utilized to evaluate the region where the NDVI value 

differed from the NDVI average throughout the same time period. Through the vegetation index, the 

drought can be reflected in this. The study has used an analysis technique to determine how a drought 

develops through time and space. Effectively identifying the origin and type of drought was possible 

thanks to several satellite photos collected from MODIS data. The preparation of the drought 

mitigation in the area for the concerned agencies will benefit from this.                             

3.3. NDVI analysis   

Equation 1 demonstrates that the electromagnetic reflection of RED wave and NIR wave were 

calculated differently. 

 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅𝐸𝐷

𝑁𝐼𝑅+𝑅𝐸𝐷
                                                                                                                                                          (1) 
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The NDVI readings ranged from -1 to +1. The NDVI displayed a negative result for the water 

area. The NDVI value for the land region with less vegetation was almost zero. A +1 was indicated 

for the green region. Because of these capabilities, NDVI was used as a tool to forecast and study 

changes in vegetation that were influenced by the environment (Laosuwan et al., 2016; Buma & Sang-

Il, 2019). 

 

Fig. 2. Flowchart of methodology. 

3.4. SVI analysis   

The monthly MOD13Q1 (NDVI) data are utilized because the SVI value was derived from 

NDVI and because they can be a valuable indicator and are frequently used for monitoring and 

analyzing vegetation dynamics. The MOD13Q1 (NDVI) data's z-scores are used to calculate the SVI 

value for each pixel point. The standard score is generated using the NDVI of each pixel location for 

each season to determine the standard deviation from the mean in a unit of standard deviation. The 

three periods (seasons in Thailand) that make up this study's classification of the seasons are the 

summer (17 February to 16 May), the rainy season (17 May to 16 October), and the winter (17 October 

to 16 February). The specifics of the z-score analysis were shown in equation 2. 

 

 𝑍𝑖𝑗𝑘 =
𝑁𝐷𝑉𝐼𝑖𝑗𝑘 − 𝑁𝐷𝑉𝐼𝑖𝑗̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

𝜎𝑖𝑗
                                                                                            (2) 

where;  

Zijk  = the z-value for pixel i during week j for year k 

NDVIijk  = the weekly NDVI value for pixel i during week j for year k 

𝑁𝐷𝑉𝐼𝑖𝑗
̅̅ ̅̅ ̅̅ ̅̅ ̅ = the mean NDVI for pixel i during week j over n year and  

𝜎𝑖𝑗 = the standard deviation of pixel i during week j over n years 

 

From the equation 2, the Zijk value is a hypothesis value to be consistent with a standard normal 

distribution with the mean of 0 and standard deviation of 1 to examine hypothesis from pixel locations 

in each season of the year 2017, 2018, 2019, 2020 and 2021. The probability value of SVI = P (Zijk) 

of the standard score of NDVI to reflect the probability of plant conditions. The SVI analysis can be 

seen in the equation 3 (Uttaruk & Laosuwan, 2017a; Uttaruk & Laosuwan, 2019; Pachanaparn et al., 

2022). 

MODIS satellite 

From 2017-2021 

Time series data analysis 

Time series drought 

classification 

Statistical analysis 

Drought results in the EEC 

Z-score 

Standardized 

Vegetation Index 

(SVI) 

h27v07 of MOD13Q1 
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𝑆𝑉𝐼 =
𝑍𝑖𝑗𝑘 − 𝑍𝑖𝑗𝑀𝐼𝑁

𝑍𝑖𝑗𝑀𝐴𝑋 − 𝑍𝑖𝑗𝑀𝐼𝑁
                                                                                        (3) 

where; 

Zijk = z-value for pixel i during week j for year k; 

ZijMAX = maximum of z-value for pixel i during week j  

ZijMIN = minimum of z-value for pixel i during week j 

 

From the Equation 3, the probability of each pixel location will be shown in SVI value to recognize 

the greenness of plants in different seasons or different periods. The study will conduct over the 5 

years periods (2017-2021) to indicate comparison of high level and low level of drought observed in 

the mentioned periods based on the seasons. It is an estimation of probability of current vegetation 

condition from previous vegetation condition. SVI value would lie above zero but lower than one (0 

< SVI < 1) where 0 is the lowest standard score of NDVI value at a pixel location observed at a certain 

time of the 5 years period and 1 is the highest standard score of NDVI value at a pixel location 

observed at a certain time of the 5 years period. 

 

3.5. Spatial analysis of drought 

In each month of the years 2017, 2018, 2019, 2020, and 2021, the critical levels of vegetation 

were used to categorize the spatial study of drought intensity. There are 5 levels of SVI drought 

severity. Table 1, lists the five SVI drought levels, with the lowest level (0.00–0.05) denoting a very 

high drought and the highest level (0.9–1.00) denoting a very low drought. 

 
Table 1.  

SVI level, percentage of SVI and drought level. 

Drought level of SVI Percentage of SVI Vegetation density 

1.00 – 0.95 96.0% - 100% Very high 

0.95 – 0.75 76.0% - 95.0% High 

0.75 – 0.25 26.0% - 75.0% Moderate 

0.25 – 0.05 6.0% - 25.0% Low 

0.05 – 0.00 0% - 5.0% Very low 

 

3.6. Multi-temporal drought analysis 

In this study, the average monthly rainfall data for the years 2017, 2018, 2019, 2020, and 2021 

collected from TMD's rainfall measurement earth station, a total of 28 stations covering only the study 

area, will be analyzed with the SVI analysis results. 

 

3.7. Statistic correlation analysis 

The results of the SVI analysis and the rainfall data for the years 2017, 2018, 2019, 2020, and 

2021 are shown to explain how the linear regression analysis technique was used to rectify the 

statistical errors. The SVI index was used to display the probabilities in the photos. Using the 

vegetation state from the pass, it was possible to estimate the likelihood of the current vegetation. The 

SVI values ranged from greater than zero to less than one (0 SVI 1). The lowest standard SVI score 

from photos taken in 2017 through 2021 was zero. 

 

3.8. SVI Analysis for Drought Monitoring 

The standard scores used for the SVI computation were derived using monthly SVI data for the 

years 2017, 2018, 2019, 2020, and 2021. The average and standard deviation for each image then 

needed to be determined. The standard scores for each month and year were needed for the SVI 

calculation, which was followed by an analysis for monthly likelihood in each image's point. By 

categorizing SVI values into levels, the monthly SVI maps for the years 2017, 2018, 2019, 2020, and 

2021 were created. 
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4. RESULTS AND DISCUSSIONS 

4.1. SVI analysis results 

The SVI was used to track droughts by analyzing reflections of vegetation probabilities 

throughout a variety of time periods. Calculations were made of the SVI variations at each point and 

time period in each year. The findings showed that in 2017, the vegetation density ranged from 0 to 

1, with the lowest, greatest, average, and standard deviation of SVI representing it.  

In each season and time period, the average represented vegetation density and drought. The 

lowest average was 0.1252 in February, the previous winter season, and the highest average was 

0.1484 in October (16/10/2017), the rainy season. In 2018, the winter season's highest average was 

0.1467 while the early wet season's lowest average was 0.1140. The lowest average was 0.1262 in 

August during the rainy season, and the highest average in 2019 was 0.1429 in November 

(01/11/2019).  

The winter season's highest average in 2020 was 0.2053 in December, while the winter season's 

lowest average was 0.1269 in February. In 2021, the early rainy season's May had the greatest average 

of 0.2101 and the winter season's January had the lowest average of 0.1231. The averages, SVI 

standard deviation, and the lowest and highest standard scores all played a role in determining the 

SVI variances for each season and time period. Therefore, the fifth year SVI averages could be 

concluded (Fig. 3).  

 
 

 
 

 

Fig. 3. Fifth year SVI averages. 

 

The SVI variations in each period and season, which were influenced by vegetation density and 

rainfall, were depicted by the graphs. Results were poor from January through April during the heat. 

The lowest result was obtained in July 2018, and it rose to the highest level during the winter months 

of December 2020 and early rainy season in May 2021. Early in the winter, in October, it had begun 

to decline once more. 

Additionally, this study's analysis of the yearly SVI included data from monthly data overlays, 

which allowed it to more accurately depict the spatial and temporal nature of droughts than monthly 

data alone. In Fig. 4, the year 2021 had the worst spatial drought, which was followed by the years 

2018, 2020, 2019, and 2017 in that order. 
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Fig. 4. SVI yearly analysis from 2017 – 2021. 

4.2. Multi-Temporal analysis results  

SVI monthly average and rainfall during a five-year period revealed that the SVI average's 

temporal variation matched the monthly rainfall; however, the change in SVI was slower than that of 

rainfall because vegetation only began to grow after receiving enough water for leaf formation or 

growth. The summary of the multitemporal drought analysis is shown in Fig. 5 

 
Fig. 5. Multi-temporal drought analysis. 
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In 2017, variations in rainfall were lowest from January to April, peaked in May, and then fell 

to their lowest level in October. In 2018 and 2019, variations in rainfall were lowest in January, 

climbed steadily, peaked in May, dropped to their lowest in July, peaked again in September, and 

finally decreased to their lowest in December. Rainfall variations in 2020 and 2021 were somewhat 

greater in January and then decreased until May, grew steadily and peaked in June, September, and 

October, and then steadily decreased and reached their lowest point in December. 

4.3. Statistical correlation analysis results 

The outcome of a statistical correlation analysis between SVI (the independent variable) and 

rainfall (the dependent variable) from 2017 to 2021 revealed a correlation between the two variables. 

The correlation equation for SVI and rainfall in 2020 is given by the statistical correlation analysis, 

and it is given by y = 1623.1 × -148.31, with an R2 coefficient of determination of 0.8018. The 

correlation equation for SVI and rainfall in 2021 was determined to be y = 2107.5 × -181.96 and the 

coefficient of determination R2 was found to be 0.6819. SVI and rainfall data from 2017 were 

statistically correlated, and the correlation equation was given as y = 8745.2 × -1096.6 with an R2 

coefficient of determination of 0.6262. A correlation equation of y = 6419.8 × -758.51 and a 

coefficient of determination of R2 = 0.5772 were produced by the statistical correlation analysis results 

between SVI and rainfall in 2018. A correlation equation of y = 12103 × -1544.7 and a coefficient of 

determination R2 = 0.5108 were obtained by the most recent statistical investigation of the relationship 

between SVI and rainfall in 2019 (Table 2). 
                                                                                   Table 2.  

Statistical correlation analysis from 2017 – 2021. 

Year Correlation equation R2 

2017 y = 8745.2x-1096.6 0.6262 

2018 y = 6419.8x-758.51 0.5772 

2019 y = 12103x-1544.7 0.5108 

2020 y = 1623.1x-148.31 0.8018 

2021 y = 2107.5x-181.96 0.6819 

5. CONCLUSIONS 

 The average SVI could be employed as a comparison operator in this study. Drought was implied 

by low SVI levels, and the closer to zero the value was, the worse the drought. High SVI, however, 

indicated abundance; the closer to 1, the greater the abundance and absence of drought. The study 

also discovered that the largest drought area was in 2017, covering an area of 216.36 km2, followed 

by 2019 (212.65 km2), 2021 (211.23 km2), 2020 (197.09 km2), and 2018 (178.07 km2), respectively. 

Results of a multitemporal drought analysis between SVI and rainfall revealed that during the course 

of the five-year study period, the monthly averages of SVI and rainfall were consistent with one 

another, as depicted in the typical graph in Fig. 5. SVI increased in response to increasing rainfall, 

and declined in response to decreasing rainfall. However, because vegetation only began to grow once 

enough water was available for leaf formation or growth, the change in SVI was slower than the rise 

in rainfall. The coefficients of determination (R2) for the correlation between SVI and rainfall over 

the 5 years (2017 to 2021) were found to be 0.8018, 0.6819, 0.6262, 0.5772, and 0.5108, respectively. 

The findings of this study align with those of similar research on drought analysis using satellite-

based data and spectral indices, such as studies conducted in upper northeastern Thailand and 

Mahasarakham province (Laosuwan et al., 2016; Rotjanakusol, & Laosuwan, 2018), drought 

detection by application of remote sensing technology and vegetation phenology (Uttaruk & 

Laosuwan, 2017b). The SVI is a helpful instrument that can provide information about the onset, 

scope, intensity, and duration of vegetative stress in close to real-time (Sruthi & Mohammed Aslam, 

2015; Vicente-Serrane et al., 2015; Pachanaparn et al., 2022). The findings of this study offer a 

standard for accurately identifying the drought region in the EEC provinces of Chachoengsao, 

Chonburi, and Rayong. Additionally, the appraisal of the drought area will be reliable and reasonably 

quick. The methodology can be obtained and used by other departments to assess and forecast drought 

in other regions of Thailand and other nations. 
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