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ABSTRACT: 

Accurate prediction of streamflow plays an important role in water resource management and 

sustainability. Recent years have seen increased interest in data-based models, compared to the more 

established physics-based models, due to the accuracy of their predictions. Better results mean greater 

support for those who are tasked with formulating strategies and writing policy around water resource 

management. The objective of this study is the development of a state-of-the-art streamflow prediction 

method based on extreme learning machine (ELM), optimized by both hunger games search (HGS) 

and social spider optimization (SSO) to make accurate predictions for the Tra Khuc River in Vietnam. 

Rainfall and flow from 2000 to 2020 at Son Giang station on the Tra Khuc River were used to build 

the streamflow prediction model. The statistical indices root-mean-square error, mean absolute error, 

and the coefficient of determination (R²) were applied to assess the predictive ability of the proposed 

models. The results showed that both optimization algorithms successfully improved the ELM model 

to predict the streamflow for one day and six days ahead by using data from one day and three days 

before the day in question. Of the proposed models, the ELM-SSO model scored highest, with 

R²=0.891 for the one-day-ahead prediction and R²=0.701 for six days ahead. Second was ELM-HGS 

(R²=0.889 and R²=0.699 for one day and six days respectively), and third was ELM (R²=0.883, 

R²=0.696). The results demonstrate ELM to be a robust data-driven method for simulating time series 

regimes that is appropriate for various hydrological applications. The models proposed in this study 

can be generalized to predict streamflow in rivers around the world. 
 

Key-words: ELM-SSO, ELM-HGS, Streamflow, Machine learning, Tra Khuc river. 

1. INTRODUCTION 

Streamflow prediction plays an important role in water resource management. It is required in 

the optimization of water resource distribution, water quality assessment, and agriculture and 

industrial development (Adnan et al., 2022; Lin et al., 2021; Parisouj et al., 2020). The streamflow 

process is very complicated because it is influenced by multiple parameters, such as precipitation, 

temperature, evaporation, and land use. It is also characterized by a nonlinear relationship between 

flow rates and characteristics of the watershed. Therefore, accurate prediction of streamflow is 

difficult (Ahmed et al., 2021; Parisouj et al., 2020). 

The literature broadly consists of two sets of streamflow prediction models: physics-based and 

data-based. Physics-based models are developed only using real-life streamflow data (Khosravi et al., 

2021; Rahimzad et al., 2021). Although this method has been proven effective in predicting the 

streamflow of rivers around the world, the development of such models is very complicated and time-

consuming. In addition, physical-based models require detailed data like topography, precipitation, 

and land use/land cover to calibrate model parameters, and these models can also be negatively 

affected when watershed data do not respond well to water balance constraints (Khosravi et al., 2021). 

The uncertainty of precipitation and hydrology data also greatly influences streamflow prediction, 
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and physics-based models suffer in data-limited regions (Krzysztofowicz, 2002). Such models may 

be replaced by more robust automated techniques. 

In recent years, data-driven models have received increasing attention from the worldwide 

scientific community. They enjoy low input-data requirements and are easy to use. There are two 

main groups: statistical models and machine learning models. Statistical models include logistic 

regression (Long et al., 2022), fuzzy logic (Kothari and Gharde, 2015), autoregressive integrated 

moving average model (Ab Razak et al., 2018; Singh et al., 2020), and autoregressive model (Özgür, 

2005; Terzi and Ergin, 2014). These models assume a linear relationship between input and output 

data, so they cannot explain the nonlinear relationship of hydrological processes. This limits 

performance. 

Machine learning has proven more effective than statistical models in solving the problem of 

nonlinearity when predicting streamflow. Such models include support vector machine (Guo et al., 

2011; Kisi and Cimen, 2011), random forest (Wang et al., 2021a), extreme learning machine (ELM; 

Yaseen et al., 2016; Yaseen et al., 2019), artificial neural network (Ali and Shahbaz, 2020; Ghimire 

et al., 2021), and long short-term memory network (LSTM; Ghimire et al., 2021; Hunt et al., 2022). 

However, traditional models use samples discretely, including input and output data, so the 

performance of these models often deteriorates if the input data contains some degree of error 

(Rahimzad et al., 2021; Tikhamarine et al., 2020). Additionally, several studies have pointed out that 

data-driven models have limited effectiveness in streamflow prediction because they require time-

series information and produce temporal dependence on the data (Adnan et al., 2021a; Ahmed et al., 

2021). To overcome these shortcomings, several studies have demonstrated how prediction accuracy 

can be improved by developing hybrid models, eliminating the weak points of individual models (Bui 

et al., 2020; Nguyen, 2022a; Pham et al., 2020).  

Adnan et al. (2022) integrated the adaptive neuro-fuzzy inference system (ANFIS) model with 

five optimization algorithms, namely gradient-based optimization (GBO), particle swarm 

optimization (PSO), genetic algorithm (GA), differential evolution, ant colony optimization, and gray 

wolf optimization (GWO) to predict streamflow in Pakistan. ANFIS-GBO was shown to perform 

better than the other models in predicting streamflow. Adnan et al. (2021b) combined the ELM model 

with PSO, GWO, and gravitational search algorithm (GSA) to predict the streamflow in the Mangla 

watershed of northern Pakistan. The ELM-PSOGWO model was superior to the other models (ELM, 

ELM-PSO, ELM-GWO, and ELM-PSOGSA). Kilinc and Haznedar (2022) used LSTM network and 

GA to predict the streamflow in the Euphrates River in western Asia. The LSTM-GA model 

outperformed the LSTM model. Al-Juboori (2021) combined K-nearest neighbor (KNN) with random 

tree (RT) to predict the monthly streamflow in three rivers in Iraq. The results saw the hybrid KNN-

RT model outperform the individual KNN and RT models.  

These models can be divided into three main approaches: ensemble framework, evolutionary 

algorithm, and swarm-based algorithm. Of the three approaches, swarm-based algorithms are the most 

popular and have been shown to be effective in predicting the streamflow in previous studies (Nguyen 

et al., 2021). These approaches can solve global optimization problems through the process of 

exploration and exploitation. However, according to the no-free-lunch theory, there are no methods 

that can solve all problems in all regions, due to differences in climatic, hydrological, and 

environmental conditions and in human activities (Bui et al., 2020). Because of this, the selection 

process is always subject to significant bias. Moreover, the overfitting problem looms large when 

using machine learning (although models can perform well in the training process because they learn 

the targets based on the samples in the past to predict streamflow in the future, in many cases, if the 

data is limited, these models may not perform well in the validation process (Mosavi et al., 2018). 

The objective of this study is the development of state-of-the-art models based on the ELM, 

hunger games search (HGS), and social spider optimization (SSO) algorithms to predict streamflow 

in the Tra Khuc River. This study is different from previous studies because it is the first time the 

ELM model has been combined with HGS and SSO to predict streamflow. In recent years, streamflow 

in the study area has been strongly influenced both by climate change and human activity, particularly 

in the dry season.  
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2. STUDY AREA AND DATA USE  

The Tra Khuc River is over 160 km long and is located in the Central region of Vietnam (Fig. 1). 

Its source is in the east of the Truong Son Mountain range and it flows into the sea at Quang Ngai. 

The basin has an area of about 3703 km2. The basin’s complex topography generally lowers from 

west to east. There are four main terrain types: plateau, high mountains, plains, and sandy coast. The 

plateau has an elevation of between 1100 and 1300 m and accounts for about 5% of the basin area. 

The high mountains have an average elevation of 500 to 700 m and account for about 70% of the 

study area. The plain runs from north to south, close to the sea; it has an altitude of 20–10 m and 

covers about 20% of the study area. The sandy coastal area consists of sand dunes distributed in a 

narrow strip, running along the coast, with an average width of about 2m. 

The Tra Khuc River basin is located in a tropical monsoon region and sees an average annual 

rainfall of about 2960 mm. The climate of the study area is characterized by two main seasons: a rainy 

season from September to January – which accounts for 70–75% of total annual rainfall – and a dry 

season from February to August, where severe drought is not uncommon. 

The hydrological system in the Tra Khuc River is characterized by short rivers and steep slopes. 

The river has nine main branches: Daclang, Nuoc Lac, Dacseco, Tam Dinh, Xa Dieu, Tam Rao, Song 

Giang, Song Phuoc, and tributary number 9. Their combined length is 195 km. The average flow rate 

of the Tra Khuc River (calculated over several years) is 176 m3/s. The flood season figure is 13 

L/s/km2. The uneven distribution of flows between the rainy and dry seasons is considered to be one 

of local authorities’ greatest challenges. During each rainy season, the basin floods an average of 

between five and seven times, while in the dry season, the river flow is depleted enough to cause 

severe drought, with significant effects on economic development.  

Water resource management is considered one of the major challenges of local government in 

the study area. In recent years, reservoirs have been built upstream of the Tra Khuc river, which cause 

negative effects on the water resource downstream: the water level of the river downstream tends to 

become drier and drier in dry season and increase rapidly in the rainy season. Therefore, streamflow 

prediction is an important task to build appropriate strategies for water resource management and 

agriculture development. 

 

Fig. 1. The location of Tra Khuc River in Vietnam. 
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In this study, daily rainfall and streamflow data at Son Giang station on the Tra Khuc River from 

the period 2000–2020 were used to construct streamflow predictions for one day and six days ahead. 

These data were divided into two parts: 90% were used to calibrate the model parameters, while the 

remaining 10% were used to evaluate model performance (Fig.2). 

 

 

 
Fig. 2. Rainfall (top) and flow (bottom) at Son Giang, 2000–2020. 

 

To make the model input data consistent and increase convergence in the model training process, 

precipitation and flow were normalized before being input into the model. There are several normalization 

techniques, such as nominal, ordinal, ratio, and min-max normalization. In this study, min-max normalization 

was used to prepare the data. In this technique, the original values of the precipitation and flow data were kept, 

but the input database was normalized using the ranges of similar measurements. The min-max was calculated 

by the following equation: 

𝐷𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 =  
(𝐷𝑖 − 𝐷min)

(Dmax − 𝐷min )
 

3. METHODS 

This study can be divided into four main steps: i) data collection, ii) model building, (iii) model 

validation, and iv) streamflow prediction (Fig. 3). 

i) Data collection 

Precipitation and flow data at Son Giang station were collected to build the streamflow prediction 

models. Precipitation and flow data from the past one and three days were used to predict the 

streamflow for one day and six days ahead. Although multiple hydro-meteorological factors affect 

streamflow – including temperature, evaporation, and change in land cover – we considered only 

precipitation, as the development of an accurate prediction model using limited information is very 

useful, especially in regions where data is not available, and because the study region is located in a 

mountainous region with low average temperature, so temperature and evaporation may not play as 

important a role in streamflow prediction as they usually do. 
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The model used in this study is based on neural networks, which have the advantage of describing 

non-linear relationships between the input and output variables of a system. Initially, an analysis of 

the data obtained made it possible to highlight the information necessary to define the input variables 

of the network. Then, we identified the weights or parameters assigned to network connections. For 

this, the data was divided into two parts. As there are no universal guidelines for splitting data, we 

tried several different rates. The best results were obtained by using 90% of the data to build the 

models and 10% of the data to validate.  

Precipitation and flow data were not normally distributed; therefore, before use, these data were 

normalized to improve the predictive ability of the models. 

ii) Model construction 

HGS and SSO were used to improve the prediction ability of the ELM model. The model 

construction process was divided into two main steps: the first was the initialization of the ELM model 

parameters using the trial-and-error method. The second was the determination of the optimal 

parameters of the hybrid models. 

ELM is a feed-forward neural network for predicting the streamflow with a single layer of hidden 

nodes, where the weights connecting the inputs to the hidden nodes are randomly distributed and 

never updated. The weights between the hidden nodes and the outputs are learned in a single step, 

which is essentially the same as learning a linear model. In this study, the initialization of the neural 

network parameters included 256 weight values. 256 represents – for example – the position of the 

spider in the web for SSO or the number of animals in the hungry state for HGS. 

iii) Model validation 

The statistical indices RMSE, MAE, and R² were used to validate the streamflow model. These 

indices have been shown to be effective in previous studies. 

iv) Use model 

Predict streamflow at Son Giang station on the Tra Khuc River. 

 

3.1. ELM  

  

 ELM is a feed-forward neural network, which means that the data only traverses the series of 

layers in one direction (Ding et al., 2014). The structure of ELM includes three layers of neurons: the 

input layer, the hidden layer, and the output layer (Wang et al., 2021b). The input layer gets the 

information from the input data, while the output layer gets a linear one without any transformation 

function. The hidden layer plays a role of linking the input layer and the output layer. Extreme learning 

machines use the concept of random projection and early perceptron patterns to do specific types of 

problem solving (Huang et al., 2006). In the ELM model, rather than adjusting all the weights of a 

neural network to emulate a function, the neural network is made up of a large number of neurons in 

the inner layer. Input weights are randomly initialized once and stay with that value. The adaptation, 

which is also done in one go, therefore only concerns the weights of the output layer (Qu et al., 2021; 

Wang et al., 2021b).  

The output function of the ELM model is computed by the following equation: 

𝑌 =  ∑ 𝐵𝑖 

𝑚

𝑖=1

𝑓(𝑤𝑖𝑥𝑗 + 𝑏𝑖), 𝑗 ∊ [1, 𝑛] 

where m is the number of hidden nodes, B is the vector of output weights, x is the output vector of the hidden 

layer, and f is the activation function. 

Compared with conventional models, the hidden node parameters in ELM are not only independent 

from the training data, but also from each other. Additionally, ELM can generate node parameters 

before considering formation  
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3.2. HGS 

 HGS is a swarm-based optimizer algorithm, first introduced by Yang et al. (2021). This 

algorithm is inspired by the behavior of animals in a state of starvation. In order to find food and 

improve their survival, animals tend to cooperate with each other. Stronger animals have a greater 

heart capacity to obtain food than weak animals (Yang et al., 2021). 

 In nature, animal behavior is influenced by many different factors, a primary one being hunger. 

When the food source is limited, it leads to competition between animals – a “hunger game.” The 

HGS algorithm is divided into two stages: the first stage simulates the process of cooperation between 

animals to find a food source; the second step describes the animals’ activities in a state of starvation 

(Abu Shanab et al., 2021; Yang et al., 2021). The HGS algorithm has proven effective in the technical 

assessment and analysis of natural hazards (Nguyen, 2022b). 

3.3. SSO   

 SSO is a swarm-based optimization algorithm first developed in 2015 (Cuevas et al., 2013). It 

is inspired by the foraging behavior of spiders (Bui et al., 2020). In nature, spiders often live in groups 

and cooperate with each other in search of food. The spider web is considered as an n-dimensional 

search space where each node is a solution to the optimization problem. Spiders are agents that search 

by moving through the area (web) from node to node in search of the optimal solution (Humaidi et 

al., 2021). Spiders are divided into male and female groups. Each spider receives a weight value that 

corresponds to the solution it represents. The movement of each spider generates vibrations that 

propagate through the search space. Other spiders receive vibrations and rely on capacitive dynamics 

to determine the size of the spider and how far away it is. The spider's current position is affected by 

the current positions of all other spiders in the colony and their previous positions (Ochoa et al., 2017). 

The SSO algorithm solves the optimization problem by performing the following steps (Klein et al., 

2015; Luque-Chang et al., 2018): 

i) The optimization process starts by collecting information from random locations on the 

spider web.  

ii) Spiders are divided into two groups (60-90% of spiders in the colony are female; the rest are 

male).  

iii) The weight of each spider is determined by the objective function.  

iv) Identify the best spider in the herd, the best female, and the spider in the center position.  

v) The position of each spider is continuously updated after each loop.  

vi) Male and female spiders within the mating radius will mate to produce new spiders.  

vii) New spiders will replace weak spiders if they have better weight. 

                               

3.4. Performance assessment 

In this study, to assess the accuracy of machine learning technique in the training and validation 

process, the statistical indices RMSE, R2, and MAE were used. These indices have been shown to be 

effective in previous studies (Parisouj et al., 2020; Rasouli et al., 2012). 

RMSE and MAE are used to measure the errors between observation values and prediction values 

(Chicco et al., 2021). They are calculated by the following equations: 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑌𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑)2

𝑛

𝑖=1

 

𝑀𝐴𝐸 =
1

𝑛
∑ |

𝑛

𝑖=1

𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑌𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑| 
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where n is the number of samples, Ypredicted is the prediction value at sample i, and Yobserved is the 

observation value at sample i. 

R² is a statistical indicator that measures the strength and weakness of the relationship between the 

observation and prediction streamflow value (Meshram et al., 2022; Pirzado et al., 2021).  
 

The value of R² varies from 0 to 1. The closer R² is to 1, the more accurate the streamflow 

prediction model is. 

4. RESULTS  

4.1. Evaluation of the number of previous days 

Table 1 presents the accuracy of the proposed models in predicting the streamflow for one day 

and six days ahead. In general, when data from three days ago was used, the performance of the 

models increased. In the case of the one-day-ahead prediction, for the ELM model, the value of RMSE 

decreased from 52.707 to 51.373, MAE decreased from 25.261 to 24.995, and R² increased from 

0.883 to 0.891. For the ELM-HGS model, the value of RMSE decreased from 51.165 to 50.301. MAE 

value decreased from 24.721 to 23.206. R² value increased from 0.889 to 0.896. For the ELM-SSO 

model, the value of RMSE decreased from 50.74 to 50.233. MAE value decreased from 24.667 to 

23.199. While the R² value increased from 0.891 to 0.901. 

In the case of six days ahead, for the ELM model, the RMSE value decreased from 84.763 to 

83.815. MAE value decreased from 41.141 to 40.742. While the R² value increased from 0.696 to 

0.699. For the ELM-HGS model, the RMSE value decreased from 84.337 to 39.333. MAE value 

decreased from 40.274 to 39.333. R² value increased from 0.699 to 0.705. For the ELM-SSO model, 

the value of RMSE decreased from 84.17 to 83.289. MAE value decreased from 40.161 to 39.245. 

While the R² value increased from 0.701 to 0.707. 

In general, the ELM-SSO model performed better than the other models in predicting one-six 

days ahead using the one and three previous days, followed by ELM-HGS, ELM, respectively. The 

results also showed that two optimization algorithms were successfully improved to predict the 

streamflow in the Tra Khuc river. 

 
Table 1.  

Performance of the models for one-six days ahead using one and three previous days. 

One previous day 

 
For one day ahead For six days ahead 

RMSE MAE R² RMSE MAE R² 

ELM 52.707 25.261 0.883 84.763 41.141 0.696 

ELM-HGS 51.165 24.721 0.889 84.337 40.274 0.699 

ELM-SSO 50.74 24.667 0.891 84.17 40.161 0.701 

Three previous days 

ELM 51.373 24.995 0.891 83.815 40.742 0.699 

ELM-HGS 50.301 23.206 0.896 83.302 39.333 0.705 

ELM-SSO 50.233 23.199 0.901 83.289 39.245 0.707 
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 4.2. Evaluation of the one-day and seven-day ahead 

 To assess the prediction capacity of the proposed models, this study used two prediction 

scenarios (for one day ahead and six days ahead). In general, as the number of prediction days 

increases, the accuracy of the models is decreased in both cases of using one previous day and three 

previous days. Fig. 4 and 5 showed the value of R² for the proposed models for one and six days 

ahead using one and three previous days. 

 

Fig. 4. R² value for one day ahead using one (top) and three (down) previous days. 

For one previous day, for the ELM model, the value of RMSE increased from 52.707 to 84.763 

when the day ahead increased from one to six days. The same, the value of MAE increased from 

25.261 to 41.141. While the R² value decreased from 0.883 to 0.696. For the ELM-HGS model, the 

value of RMSE increased from 51.165 to 84.337 and from 24.721 to 40.274 for MAE. The R² value 

decreased from 0.889 to 0.699. For the ELM-SSO model, the RMSE value increased from 50.74 to 

84.17 and from 24.667 for MAE. While the R² value decreased from 0.891 to 0.701. 
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For three previous days, the value of RMSE increased from 51.373 to 83.815 and from 24.995 to 

40.742 for the value of MAE. While the value of R² decreased from 0.891 to 0.699 for the ELM 

model. For the ELM-HGS model, the value of RMSE increased from 50.301 to 83.302 and from 

23.206 to 39.333 for the value of MAE. While the R² value decreased from 0.896 to 0.705. For the 

ELM-SSO model, the value of RMSE increased from 50.233 to 83.289 and from 23.199 to 39.245 

for the value of MAE. The R² value decreased from 0.901 to 0.707. 

It can be seen on the above figures that by increasing the number of previous days to forecast the 

flow, the observed and predicted values tend to concentrate along the regression line, and to approach 

each other. Therefore, the accuracy of the model increases.  

 

 

Fig. 5. R² value for six days ahead using one and three previous days. 
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On the contrary, by increasing the number of forecast days from 1 to 6 days, the values of 

observations and forecasts tend to be further from the regression line and further out. As a result, the 

accuracy of the model decreases.  

Fig. 6 and 7 show the throughput value for one and six days ahead using one and three previous 

days. For one day ahead using on and three previous days, in general, the predicted streamflow value 

follows the observed streamflow value. However, the predicted streamflow value during major 

flooding tends to be lower than the observed streamflow value. Meanwhile, for six days ahead using 

one and three previous days, not only the streamflow value at large floods is lower than the observed 

value, but also at small and medium floods. 

 

 

 

 
 

Fig. 6. The streamflow for one (top) and six (down) days ahead using one previous day. 

 

Fig. 6 and 7 show the throughput value for one and six days ahead using one and three previous 

days. For one day ahead using on and three previous days, in general, the predicted streamflow value 

follows the observed streamflow value. However, the predicted streamflow value during major 

flooding tends to be lower than the observed streamflow value. Meanwhile, for six days ahead using 

one and three previous days, not only the streamflow value at large floods is lower than the observed 

value, but also at small and medium floods. 
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Fig. 7. The streamflow for one and six days ahead using three previous days. 

5. DISCUSSION  

The accurate prediction of short- and long-term streamflow plays an important role in water-

resource management, operation, and planning. While short-term prediction (on hourly, multi-hour, 

or daily timescales) is used to provide information on flood forecasting, long-term prediction (over 

weeks, months, seasons, or years) provides important information for planning reservoir operations 

and for water resource management in general (Liu et al., 2022; Mohammadi, 2021; Rahimzad et al., 

2021). However, both are difficult, due to the stochastic and nonlinear characteristics of the flow 

process at long time scales (Mendoza et al., 2017). Therefore, in recent years, great effort has been 

made in the development of automated control and monitoring methods. Using artificial intelligence 

techniques as a basic tool for decision support can generate more detailed answers.  

ELM stands out from other tools due to its capacity and its speed of learning. In addition, it has 

the advantage of being able to intrinsically describe non-linear relationships between the input 

variables and the output variables of a system (Adnan et al., 2021a; Anmala and Turuganti, 2021; 

Gholizadeh et al., 2022).  

The results confirmed that two optimization algorithms (HGS and SSO) successfully improved 

the prediction ability of the ELM model. Among the proposed models, ELM-SSO performed best, 

with R² = 0.891 (one day ahead) and 0.701 (six days ahead), followed by ELM-HGS with R² = 0.889 

(one day ahead) and 0.699 (six days ahead), and then ELM with R² = 0.883 (one day ahead) and 0.696 

(six days ahead).  
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SSO has advantages regarding the balance between the processes of exploration and exploitation. 

Compared with traditional methods, the learning and convergence speed of SSO is faster (Luque-

Chang et al., 2018; Mirjalili et al., 2015). HGS is based on a population with a factor that transforms 

randomly, so it can enrich the ability of exploration and exploitation in the process of foraging. 

Moreover, HGS has advantages on the adaptive and time-varying mechanism, so this algorithm can 

solve the local optimization problem (Yang et al., 2021). 

In recent years, streamflow has been strongly influenced by human activities such as dam 

construction and land-cover change. This causes difficulties in streamflow prediction, especially in 

extreme conditions such as flooding. Although several previous studies have shown the data-based 

approach to be better than other approaches (Tran et al., 2021; Tran and Kim, 2022), there is still 

debate around the effectiveness of machine learning and deep learning in streamflow prediction under 

the aforementioned conditions. This may be resolved if the amount of data to train the data is 

sufficient. 

This study encountered general limitations. Several studies have pointed out that the water level 

at the station is considered an important factor in predicting streamflow; however, in the study area, 

the water level is very difficult to measure. So, in future research, we will try to collect more data to 

improve the predictive ability of the proposed models. Additionally, as mentioned above, streamflow 

has been influenced by human and climatic activities. This topic needs to be explored in greater depth. 

6. CONCLUSIONS 

Streamflow prediction with high precision can play a crucial role in optimizing the distribution 

of water resources, the development of agriculture, and in industry more generally. Therefore, the 

objective of this study is the development of state-of-the-art method based on ELM and two 

optimization algorithms, namely HGS and SSO to predict the daily streamflow in the Tra Khuc river 

of Vietnam. 

In this study, two optimization algorithms were successfully proven to improve the prediction 

ability of the ELM model to predict the streamflow in the Tra Khuc River. The complete proposed 

models can be generalized to predict the streamflow in the other river in Vietnam, especially in data-

limited regions. The use of machine learning can support decision makers in building appropriate 

strategies and policies for water resource management. 

The hydrological regime of the Tra Khuc River was recorded during the process of ELM, ELM-

HGS, ELM-SSO model formation, with an accuracy of +0.8. Of the proposed models, the ELM-SSO 

model performed best. The results highlighted that the prediction of the extreme discharge values of 

the proposed models is still limited and the accuracy of prediction results decrease when increasing 

the number of prediction days. The results of this study can be an effective tool to analyze and develop 

water resource management strategies in Vietnam in particular and in the whole world in general. The 

methodology used in this study can also be developed to predict the natural hazard such as salinity 

prediction.  
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