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ABSTRACT:  

El Niño Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) can affect the increase in rainfall 

intensity and the number of dry days, also known as dry spells that can cause drought and increase the 

potential for forest fires. This study examines the effect of ENSO and IOD conditions on the joint 

distribution of the number of dry days and total precipitation in a fire-prone area in southern Sumatra, 

Indonesia. The joint distribution is constructed using rotated copulas from several families, including 

Gaussian, student’s t, Clayton, Gumbel, Frank, Joe, Galambos, BB1, BB6, BB7, and BB8. Fire-prone 

areas are defined using k-mean clustering, while the copula parameters are estimated using the 

inference of function for margins (IFM) method. Based on the peak of joint probability density 

functions (PDFs), ENSO and IOD conditions had a significant effect in the dry season but had no 

significant effect in the rainy season. The peak of joint PDFs is getting to the dry-dry conditions when 

the ENSO and IOD indexes increase in the dry season. However, based on coincidence probability, 

ENSO conditions still influence the joint distribution between the number of dry days and total 

precipitation during the rainy season but not with IOD conditions. The lower the ENSO index, the 

higher the probability of wet conditions co-occurring in the number of dry days and total precipitation. 

Meanwhile, ENSO and IOD conditions significantly affect the coincidence probability between the 

number of dry days and total precipitation. Moderate-Strong El Niño has the most considerable 

coincidence probability of 68.5%, followed by Positive IOD with 62.6%. The two conditions had 

similar effects on the joint distribution of the number of dry days and total precipitation. Moreover, 

the association between the number of dry days and the total precipitation was stronger in the dry 

season than in the rainy season. 
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1. INTRODUCTION 

Indonesia - an archipelagic country on the equator flanked by two continents (Asia and Australia) 

and two oceans (Indian and Pacific Oceans)- has varied climatic conditions. These climatic conditions 

are influenced by the surrounding oceans, locally and globally. The high precipitation amount in 

almost all provinces is made possible by an ample supply of water, which comes from the surrounding 

sea (Nuryanto & Badriyah, 2014). Therefore, local sea conditions will affect the climatic conditions 

of the surrounding islands. Besides local sea conditions, climatic conditions are also influenced by 

global ocean conditions around Indonesia, such as the El Niño Southern Oscillation (ENSO) in the 

Pacific Ocean and the Indian Ocean Dipole (IOD) in the Indian Ocean (Kurniadi et al., 2021). 

ENSO is an ocean-atmosphere interaction centered in the equatorial Pacific Ocean that has a 

global impact on Earth’s system (McPhaden et al., 2006). ENSO causes Indonesian seas to be colder 

during El Niño events and warmer during La Niña events, resulting in increased precipitation during 

La Niña and decreased precipitation during El Niño (Nur’utami & Hidayat, 2016). Meanwhile, IOD 
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is a phenomenon indicated by differences in sea surface temperature anomalies in the western and 

eastern parts of the Indian Ocean.  

The positive phase of IOD causes a decrease in sea surface temperature in Indonesia, the same as 

El Niño, accompanied by a reduction in precipitation (Khaldun et al., 2018). Contrary, the negative 

phase of IOD is like La Niña conditions in the Pacific Ocean. ENSO and IOD phases in each year are 

not always the same. However, the impact will be more significant if ENSO and IOD are 

simultaneously in a warm (or cold) phase. For example, the droughts in 1997 and 2015 coincided with 

ENSO being in an El Niño phase and IOD being in a positive phase (Avia & Sofiati, 2018). 

El Niño and positive IOD, which reduce precipitation, indirectly contributed significantly to 

drought occurrence in several regions in Indonesia, although with different strengths in each area 

(Ummenhofer et al., 2013). Drought reduces the water content of vegetation, loss of water content in 

extensive woods, leading to plant death, and increased fire potential (Suharjo & Velicia, 2018). 

Therefore, precipitation is urgently needed so vegetation’s water content can remain within normal 

limits. The prolonged drought in 1997 caused by the late rainy season due to El Niño and positive 

IOD climate variability of 1997/1998 has triggered widespread forest fires in the equatorial regions 

of Sumatra and Kalimantan (Nikonovas et al., 2022).  

Previous research has found that forest fires in Kalimantan are more sensitive to ENSO than IOD. 

Meanwhile, the effect of IOD on forest fires was more pronounced in the southern part of Sumatra 

because it is located near the Indian Ocean (Nurdiati et al., 2021). Moreover, although it has been 

mentioned that the lack of precipitation can be a triggering factor for forest fires, the total precipitation 

is insufficient to characterize forest fires in Indonesia. Other indicators such as the number of dry 

days, i.e., the number of days with less than 1 mm of precipitation per day (Brown et al., 2010), can 

better characterize forest fires than total precipitation. Although many experts have investigated the 

effect of ENSO and IOD on precipitation in Indonesia (Lestari et al., 2018), there has been limited 

research examining the joint distribution of the number of dry days and total precipitation under 

different ENSO and IOD phase conditions. 

The copula function is the most common method for constructing a joint distribution. The copula 

is a statistical method that can describe the relationship between variables that is not too tight on 

distribution assumptions and can clearly show dependency relationships at extreme points (Singh et 

al., 2020). This method can describe the dependency structure between variables with different 

marginals and model their tail dependencies (Caraka et al., 2016). Copula has been widely used to 

address uncertainties in coincidence probability (Yang et al., 2020), conditional probability (H. W. Li 

et al., 2021), and joint return period analysis (Naeini et al., 2021). However, according to a systematic 

literature review, the copula is still limited to being applied in forest fire analysis (Najib et al., 2021). 

According to the background presented, this study analyzes the joint distribution of the number 

of dry days and total precipitation in fire-prone areas in southern Sumatra using the copula function. 

This study begins by identifying fire-prone areas in Sumatra using k-mean clustering based on the 

burned area dataset. In the specified fire-prone areas, the number of dry days and total precipitation 

were extracted from 1981 to 2020. After that, the copula function was employed to construct the joint 

distribution of the number of dry days and total precipitation. The joint distribution is constructed 

based on the seasonality and phases of ENSO and IOD to analyze the effect of these conditions on 

the dependencies and coincidence probability. The study results are expected to improve 

understanding of the dependencies between the variables studied and become an initial provision for 

further analysis of extreme events such as floods, droughts, and forest fires in the study area. 

2. STUDY AREA AND DATASETS 

This study focused on southern Sumatra, located at 98°E-107.5°E and 1.5°S-6°S (Fig. 1). This 

study will use four types of data: precipitation, Niño 3.4 index, dipole mode index, and burned area 

datasets. Precipitation data was derived from Climate Hazards Group Infra-Red Precipitation with 

Station data (CHIRPS) with a spatial resolution of 0.25°×0.25° in daily and monthly temporal 

resolutions from 1981 to 2020. Total precipitation data were taken from monthly data, while dry spell 
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data were extracted using daily data. Moreover, The Niño 3.4 and dipole mode index is time-series 

data obtained from the average of Hadley Center Sea Ice and Sea Surface Temperature (HadISST1) 

data. The data was downloaded from the Physical Sciences Laboratory (PSL) of the National Oceanic 

and Atmospheric Administration (NOAA) from 1981 to 2020. Both are using 1981-2010 as an 

anomaly in the index calculation. The burned area data uses the fourth generation of the Global Fire 

Emission Database (GFED4.1s) from 1997-2016 to define fire-prone areas. The GFED4.1s dataset 

provides monthly global burned area data with a spatial resolution of 0.25°×0.25° in Hierarchical 

Data Format version 5 (HDF5). 

 

3. METHODS 

3.1. k-Means Clustering 

This study begins by collecting data from several sources mentioned (data integration), then 

defining fire-prone areas in southern Sumatra using 𝑘-mean clustering. After that, the number of dry 

days and total precipitation are extracted and aggregated (data reduction). Thus, the time series of the 

number of dry days and total precipitation are obtained, then partitioned based on seasonality, ENSO, 

and IOD conditions.  

K-means clustering is the most common and popular unsupervised algorithm for clustering. The 

𝑘-means objective can be written in a minimization problem given by 

 

argmin
𝜇𝑗

∑ ∑ ‖𝑥𝑗 − 𝜇𝑗‖
2

𝑥𝑗∈𝐷𝑗
′

𝑘

𝑗=1

 (1) 

 

where 𝜇𝑗 represent the mean of the 𝑗-th cluster and 𝐷𝑗
′ denotes the subdomain of the dataset associated 

with the 𝑗-th cluster (Brunton & Kutz, 2022). We use standardization before clustering to provide 

better, more efficient, and more accurate results (Mohamad & Usman, 2013). 

3.2. Correlation Coefficient 

Correlation analysis measures the strength of the relationship between two variables, called a 

correlation coefficient. Three popular correlation coefficients are Pearson (𝑟), Spearman (𝜌), and 

Kendall (𝜏) correlation coefficients (Hauke & Kossowski, 2011). The existence of a correlation 

between variables is a sufficient condition for copula-based analysis. Because the copula used mostly 

has a relationship with the Kendall correlation, this study uses the Kendall correlation coefficient to 

examine the relationship between variables. 

 
Fig. 1. Location of the southern part of Sumatra on a map of Indonesia 
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3.3. Copula-Based Joint Distribution 

The copula is a function that couples multivariate distribution functions with one-dimensional 

marginal distribution functions. In another sense, the copula is a multivariate distribution function 

whose one-dimensional margin is uniform at the interval (0,1). The copula function can describe 

dependencies between variables, which is an important step in connecting one climate information to 

another. 

The advantage of the copula function is that each variable is joined by its marginal distribution 

instead of its original value. Unlike other multivariate distributions, the copula function is flexible in 

the type of marginal distribution used and does not require input variables to share a similar 

distribution. Let 𝐻 be a joint distribution function with 𝐹 and 𝐺 as edges, then there is a copula 𝐶 

such that for every 𝑥, 𝑦 ∈ 𝑅, so that 

 

𝐻(𝑥, 𝑦) = 𝐶(𝐹(𝑥), 𝐺(𝑦)) (2) 

 

If 𝐹 and 𝐺 are continuous cumulative distribution functions (CDFs), then 𝐶 is unique (Nelsen, 2006). 
Assuming the variables are continuously distributed, then 𝐶 is unique and the joint density function 

ℎ(𝑥, 𝑦) can be written as 

 

ℎ(𝑥, 𝑦) = 𝑐(𝐹(𝑥), 𝐺(𝑦)) ⋅ 𝑓(𝑥) ⋅ 𝑔(𝑦) (3) 

 

where 

𝑐(𝐹(𝑥), 𝐺(𝑦)) =
𝜕2

𝜕𝐹(𝑥) 𝜕𝐺(𝑦)
𝐶(𝐹(𝑥), 𝐺(𝑦)) (4) 

 

where 𝑓 and 𝑔 are continuous probability density functions (PDFs) and 𝑐 is a copula density. 

3.3.1. Parameters Estimation 

This study uses the inference of function for margin (IFM) method to estimate the copula 

parameters. The first step of this method is to estimate the distribution function used as edges for the 

copula. There are three continuous distribution functions used, namely generalized extreme value 

(GEV), normal (N), and lognormal (LN). The fittest distribution function was selected and tested 

using the Anderson-Darling hypothesis test. After obtaining the fittest distribution function, the 

second step of the IFM method is estimating the copula parameters. Different copulas have their own 

characteristics in describing the dependency structure of a pair of variables. There are 11 copulas 

considered to investigate the dependency structure between the two variables, including Gaussian, 

Student t, Clayton, Gumbel, Frank, Joe, Galambos, BB1, BB6, BB7, and BB8. The fittest copula 

function was selected and tested using the Cramer-von Mises hypothesis test (Najib et al., 2022b). 

Moreover, the first and second steps of the IFM method aim to find the parameter values by 

maximizing the log of the likelihood of each function. Code for fitting parameter values of univariate 

distribution and copula functions is available on the GitHub page: https://github.com/mkhoirun-

najiboi/mycopula. 

3.3.2. Coincidence Probability 

By dividing the three parts of each edge, each variable’s dry, normal, and wet conditions can be 

determined. Coincidence probability is the probability of dry, normal, and wet conditions of two 

variables simultaneously, whether the conditions are the same or not (Najib et al., 2022a). It is called 

synchronous probability if the two conditions are the same (wet-wet, normal-normal, and dry-dry). 

Conversely, if the conditions are different (wet-normal, dry-wet, etc.), then it is called asynchronous 

probability (Fig. 2). 
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4. RESULTS AND DISCUSSION 

4.1. Southern Sumatra Fire-Prone Areas 

The definition of fire-prone areas using k-mean clustering is done using several choices of the 

number of clusters. Based on several experiments, clustering with 8 clusters gives the lowest RMSE 

value compared to the others Fig. 3a. The RMSE in question is the difference between the time series 

on the data burned area in the fire-prone area and the data burned area in the study area. Fire-prone 

areas are defined by removing clusters that have low hotspot characteristics. Based on Fig. 3b, clusters 

A and C from the 8-mean clustering results have low hotspot characteristics. 

The results of clustering on the burned area data using 8-means clustering are shown in Fig. 3c. 

Each color represents eight different clusters named with the letters A to H to avoid misunderstanding 

if given a name based on numbers. Fire-prone areas are defined by eliminating clusters with low 

burning area characteristics. Fig. 3d shows the maximum value of the burn fraction in a month that 

has occurred in an area of 0.25°×0.25°. The fire-prone areas are focused on three districts in South 

Sumatra province: Ogan Komering Ilir, Banyuasin, and Musi Banyuasin. The most considerable burn 

fraction reached 78.6% in the Ogan Komering Ilir district in October 1997. Based on Fig. 3b, the 

clusters assessed as not prone to fire are clustered C and A, so the other clusters are designated fire-

prone areas.  

 

 

 

Fig. 3. Definition of fire-prone areas in southern Sumatra: (a) RMSE value from the results of clustering from 

several choices of the number of clusters, (b) 8-means clustering results (cluster characteristics), (c) 8-means 

clustering results (cluster location) and (d) maximum burn fraction value for each area. 

ww nw dw 

wn nn dn 

wd nd dd 

Fig. 2. Illustration of the coincidence probability of the number of dry days (𝑥) and total precipitation (𝑦): 

synchronous probability with blue shading and otherwise asynchronous probability. The subscripts w, n 

and d mean wet, normal and dry conditions. 
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The area covered by the blue dotted box is the area removed from the fire-prone area. The burned 

area, precipitation, and the number of dry days data are aggregated to obtain the time series of each 

data using this fire-prone area. 

4.2. Correlation Analysis 

This section determines which of the cumulative monthly, 2-monthly, and 3-monthly number of 

dry days and total precipitation data provides the highest correlation to the burned area data. Table 1 

shows the Kendall correlation value for each condition. In the total rainfall data, the Kendall 

correlation coefficient shows that the 2-month cumulative variable provides the highest correlation. 

Meanwhile, the 3-month cumulative variable gives the highest correlation on the number of dry days. 

Therefore, 2-month and 3-month cumulative variables were selected for total precipitation and the 

number of dry days data, respectively. 
Table 1. 

Pearson, Spearman, and Kendall correlation values between climate indicators  

(the number of dry days and total precipitation) and burned area. 

Pair variables 
Cumulative Variable 

1-month 2-month 3-month 

Number of dry days and burned area 58.8% 67.0% 67.3% 

Total precipitation and burned area 54.6% 63.6% 57.2% 

 

The existence of sufficient correlation is a requirement for using copula-based analysis. The 

copula parameter has a close relationship with the Kendall-𝜏 correlation coefficient. Therefore, the 

Kendall-𝜏 correlation coefficient between the variables that have been partitioned by season and phase 

of ENSO and IOD needs to be considered (Table 2).  

There are two seasons to consider, i.e., the rainy (Nov-Apr) and dry (May-Oct) seasons. 

Meanwhile, four ENSO conditions were considered: La Niña (Nino Index ≤ −0.5), Normal (−0.5 <
 Nino Index < 0.5), weak El Niño (0.5 ≤ Nino Index < 1), and moderate-strong El Niño (Nino Index 

≥ 1, for simplicity, will be called strong El Niño). Furthermore, the three IOD conditions consisted 

of Negative IOD (DMI ≤ −0.4), Neutral IOD (to differentiate from “Normal” terms in ENSO 

conditions, −0.4 < DMI < 0.4), and Positive IOD (DMI ≥ 0.4). 
Table 2. 

Kendall-𝝉 correlation coefficient between the number of dry days and total precipitation  

under different ENSO and IOD conditions.  

Season 
ENSO Conditions IOD Conditions 

La Niña Normal Weak El Niño Strong El Niño Negative Neutral Positive 

Rainy -33.4% -31.6% -31.2% -48.8% -30.8% -35.8% -51.4% 

Dry -59.2% -65.1% -76.8% -81.9% -35.0% -66.8% -84.2% 

 

The Kendall-𝜏 correlation coefficient between the number of dry days and total precipitation has 

a negative relationship, with the lowest correlation being -30.8% and the highest being -84.2%. The 

strength of the correlation of each pair-variable ranged from moderate to very strong. Thus, all pair 

variables can be analyzed using the copula function. 

4.3. Parameters Estimation 

4.3.1. Distribution Functions 

The first step in copula-based joint distribution analysis using the IFM method is to estimate the 

univariate distribution function of each edge. Tables 3 and 4 show the fittest distribution functions of 

the number of dry days and total precipitation in the rainy and dry seasons, respectively. The 

Anderson-Darling hypothesis test was employed to test the suitability of the distribution. The null 

hypothesis of this test is that the data comes from a population spread on the selected distribution 

function. With a p-value of more than the 5% significance level, each of the selected distributions was 
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in accordance with the data because the hypothesis test failed to reject the null hypothesis. Thus, each 

selected distribution function can be used as an edge for constructing the copula function. 

 
Table 3. 

Fittest distribution functions (i.e., Generalized Extreme Value/GEV, Normal, or Log Normal/LN) with 

the p-value of the Anderson-Darling hypothesis test (rainy season). 

 
ENSO Conditions IOD Conditions 

La Niña Normal Weak El Niño Strong El Niño Negative Neutral Positive 

Number of dry days 
GEV 

(81.7%) 

GEV 

(94.8%) 

GEV 

(85.0%) 

GEV  

(59.7%) 

Normal 

(96.1%) 

GEV 

(73.2%) 

GEV 

(53.4%) 

Total Precipitation 
LN 

(74.8%) 

LN 

(84.7%) 

GEV 

(86.7%) 

GEV  

(78.9%) 

Normal 

(88.5%) 

Normal 

(47.2%) 

GEV 

(60.0%) 

Table 4. 

Fittest distribution functions (i.e., Generalized Extreme Value/GEV, Normal, or Log Normal/LN) with 

the p-value of the Anderson-Darling hypothesis test (dry season). 

 
ENSO Conditions IOD Conditions 

La Niña Normal Weak El Niño Strong El Niño Negative Neutral Positive 

Number of dry days 
GEV 

(86.3%) 

GEV 

(64.2%) 

GEV 

(60.7%) 

Normal 

(27.9%) 

LN 

(71.2%) 

GEV 

(52.1%) 

Normal 

(8.7%) 

Total Precipitation 
Normal 

(99.4%) 

Normal 

(99.1%) 

GEV 

(68.9%) 

GEV 

(96.6%) 

GEV 

(99.9%) 

GEV 

(95.3%) 

LN 

(77.2%) 

4.3.2. Copula Functions 

Some copula functions, such as Clayton, Gumbel, and Joe, can only be constructed on variables 

that have a positive relationship. By reconsidering Table 2 that the relationship between the two 

variables is negative, a rotated copula is needed to obtain a copula function with a negative 

relationship. Three forms of rotation will be applied, namely 90, 180, and 270 degrees: 

 
𝐶90°(𝑢, 𝑣|𝜃) = 𝑣 − 𝐶(1 − 𝑢, 𝑣| − 𝜃) (5) 

  
𝐶180°(𝑢, 𝑣|𝜃) = 𝑢 + 𝑣 − 1 + 𝐶(1 − 𝑢, 1 − 𝑣|𝜃) (6) 

  
𝐶270°(𝑢, 𝑣|𝜃) = 𝑢 − 𝐶(𝑢, 1 − 𝑣| − 𝜃) (7) 

Table 5 shows the fittest copula function with the p-value of the Cramer-von Mises hypothesis 

test. With a 𝑝-value of more than 5% significance level, each of the selected copula functions was 

appropriate because the hypothesis test failed to reject the null hypothesis. Thus, each chosen copula 

function can be used to construct the joint distribution between the number of dry days and total 

precipitation in each condition. 
Table 5. 

Fittest copula functions with the p-value of the Cramer-von Mises hypothesis test. 

Season 
ENSO Conditions IOD Conditions 

La Niña Normal Weak El Niño Strong El Niño Negative Neutral Positive 

Rainy 
Joe-90° 

(53.6%) 

BB7-270° 

(63.6%) 

Gumbel-270° 

(60.3%) 

BB8-270° 

(59.2%) 

Clayton° 

(76.6%) 

Galambos-90° 

(37.3%) 

BB8-270° 

(43.4%) 

Dry 
Joe-270° 

(70.6%) 

BB1-90° 

(59.9%) 

Gumbel-90° 

(72.4%) 

Frank-270° 

(64.3%) 

Joe-270° 

(77.5%) 

BB8-270° 

(60.8%) 

Frank° 

(35.4%) 

 

With a variety of copula functions that have been developed and widely used, various 

characteristics of the relationship between variables can be handled by the copula (Z. Li et al., 2020). 

As in Table 5, each copula function formed for each condition varies from Clayton to BB7 copulas. 

The various functions of the copula can cope with different relationship behaviors, such as joint 

behavior in extreme or tail regions. 
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4.4. Joint Density Functions 

After selecting the distribution and copula functions that can represent the data, the joint density 

function is calculated using Eq. 4, then visualized using a contour plot for each ENSO (Fig. 4) and 

IOD (Fig. 5) conditions. Contour levels have been equalized for each condition so that each can be 

compared with the others. In each plot, nine square areas show each combination of coincidence 

probability areas. 

Based on Fig. 4, each ENSO condition in the rainy season has no significant effect on the joint 

distribution of the number of dry days and total precipitation. This can be seen from the dashed line, 

which is the peak of the joint probability density functions (PDFs). The peak of joint PDFs in the 

rainy season does not experience a significant shift and is around normal to wet, with dry days of 

about 20 days per 3-month and total precipitation of around 600 mm per 2-month. However, some 

values become outliers and lie in dry conditions during Weak El Niño and Strong El Niño. This outlier 

occurred in November and December, indicating that there was a delay in the arrival of the rainy 

season or the prolongation of the dry season during El Niño. 

 

 

Fig. 4. Contour plot of joint density function for each ENSO condition in the rainy and dry seasons. 

Meanwhile, the opposite happened for each ENSO condition in the dry season. The effect of the 

ENSO condition is discernible from the peak of joint PDFs movement in each condition. The peak of 

joint PDFs is getting to the dry-dry area when the ENSO index increases. The strong El Niño condition 

with the highest ENSO index causes the peak of joint PDF to be at the driest state compared to other 

ENSO conditions in dry seasons, with rainfall intensity of 99 mm in 2-month and the number of dry 

days of as much as 68.4 days in 3-month. 

As before, based on Fig. 5, each IOD condition in the rainy season does not significantly affect 

the joint distribution of the number of dry days and precipitation. In the dry season, it is seen that 

there is an influence of IOD conditions which makes the peak of joint PDFs of each condition 

increasingly enters the dry-dry area as the IOD index increases. Positive IOD conditions with the 

highest IOD index cause the peak of joint PDF to be in the driest state. The peak of joint PDF has a 

rainfall intensity of 121.5 mm in 2-month and the number of dry days of as much as 65.3 days in three 

months. 

Based on Figs. 4 and 5 in the dry season, Positive IOD conditions and Strong El Niño have similar 

effects on the joint PDFs of the number of dry days and total precipitation. Both PDF joints are 

relatively in dry-dry condition with little probability in normal-dry condition. In contrast, the joint 

PDFs during Weak El Niño conditions still touch normal-normal conditions, although the peak of the 

joint PDF is in dry-dry conditions.  
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Fig. 5. Contour plot of joint density function for each IOD condition in the rainy and dry seasons. 

4.5. Coincidence Probability 

Using a suitable copula function, a joint distribution function between climate indicators can be 

constructed and the joint probability between indicators in dry and wet conditions can be estimated. 

This probability is often referred to as coincidence or exceedance probability (Wei et al., 2020). 
Coincidence probability is used to observe the frequency of co-occurrence between the number of dry 

days and total precipitation under dry, normal, and wet conditions. The values of the synchronous 

probability are presented in Tables 6 and 7 for the rainy and dry seasons, respectively. Both also 

display the total synchronous and asynchronous probability. 

Table 6 shows the effect of ENSO on increasing the probability of wet-wet conditions and 

decreasing the probability of dry-dry conditions as the ENSO index decreases in the rainy season. The 

lower the ENSO index, the higher the probability of wet conditions co-occurring in the number of dry 

days and total precipitation. During La Niña, the probability of wet conditions simultaneously is 

30.3%. These results indicate that although the ENSO phenomenon does not show a significant effect 

from the peak of joint PDFs, the effect is clearly seen in the coincidence probability of the number of 

dry days and total precipitation.  
Table 6. 

Coincidence probability of the joint PDFs of the number of dry days and total precipitation  

(rainy season). 

Coincidence 
ENSO Conditions IOD Conditions 

La Niña Normal El Niño-Weak El Niño-Strong Negative  Neutral Positive 

dry-dry 3.4% 17.8% 19.7% 39.9% 18.5% 13.5% 38.3% 

normal-normal 15.3% 17.5% 9.9% 12.9% 15.0% 14.9% 7.6% 

wet-wet 30.3% 12.7% 11.4% 2.9% 1.8% 19.8% 13.7% 

Total Sync. 48.9% 48.0% 41.0% 55.6% 35.2% 48.3% 59.5% 

Total Async. 51.1% 52.0% 59.0% 44.4% 64.8% 51.7% 40.5% 

 

Different things are shown in the IOD conditions, where there is no evident influence from each 

IOD condition. There is no pattern of decreasing or increasing the probability of co-occurrence when 

the IOD index increases or decreases. The highest probability for co-occurrence in wet conditions is 

under Neutral IOD conditions. These results reaffirm that the IOD phenomenon does not significantly 

affect the joint PDF of the number of dry days and total precipitation in the rainy season.  
 



116 

 

Table 7. 

Coincidence probability of the joint PDFs between the number of dry days  

and total precipitation (dry season). 

Coincidence 
ENSO Conditions IOD Conditions 

La Niña Normal El Niño-Weak El Niño-Strong Negative  Neutral Positive 

dry-dry 14.1% 21.7% 48.8% 68.5% 1.0% 22.3% 62.6% 

normal-normal 20.9% 21.4% 13.7% 5.1% 19.7% 21.9% 8.9% 

wet-wet 35.9% 25.7% 15.0% 4.4% 34.8% 26.7% 8.4% 

Total Sync. 70.8% 68.7% 77.5% 78.0% 55.5% 70.8% 80.0% 

Total Async. 29.2% 31.3% 22.5% 22.0% 44.5% 29.2% 20.0% 

 

Table 7 shows that ENSO and IOD conditions significantly affect the coincidence probability 

between the number of dry days and total precipitation, confirming the statement in Fig. 5. The higher 

the ENSO and IOD indexes, the higher the dry condition probability for the number of dry days and 

total precipitation simultaneously. Strong El Niño and Positive IOD have a coincidence probability 

of 68.5% and 62.6%, respectively. The two values show almost the same probability, indicating that 

Strong El Niño and Positive IOD have similar effects on the coincidence probability of the number 

of dry days and total precipitation. Although the Weak El Niño gives a reasonably high value of 

48.8%, this value is still relatively less than the Strong El Niño and Positive IOD conditions. During 

Strong El Niño, the probability of wet-wet conditions is 4.4%, while the probability of wet-wet 

conditions in Positive IOD is 8.4%. 

Based on the value of total synchronous and asynchronous probability, only Strong El Niño and 

Positive IOD conditions give a total synchronous probability of more than 50% in the rainy season. 

In other ENSO and IOD conditions, the total asynchronous probability is higher than the total 

synchronous probability. This shows that the relationship between the number of dry days and total 

precipitation is not too high in the rainy season. Thus, the probability of different conditions occurring 

in the number of dry days and total precipitation is still relatively high, such as the probability of the 

number of dry days in wet conditions but total precipitation in normal conditions, etc. 

Meanwhile, in the dry season, the total synchronic probability is very high, around 70%, which 

indicates the relationship between the number of dry days and total precipitation is very strong. Only 

when the IOD condition is negative the total synchronous probability value is 55%, but still higher 

than the total asynchronous probability. Coincidence probability between the number of dry days and 

the total amount of precipitation under Moderate-Strong El Niño and Positive IOD is more than 50% 

in the dry season, which implies that drought and fire potential preparedness should receive greater 

attention in these conditions. 

5. CONCLUSIONS 

South Sumatra is an area in Indonesia that is very vulnerable to forest fires with respect to ENSO 

and IOD events (Putra et al., 2019). Understanding the shared behavior between local climatic 

conditions such as the number of dry days and the total amount of precipitation is considered 

important as an early stage to form a probabilistic-based model in the future. The copula model is a 

very effective way to understand the shared behavior of climate indicators (Dixit & Jayakumar, 2022; 

Hussain et al., 2022).  

This study has defined fire-prone areas in southern Sumatra using k-means clustering. Based on 

the fire-prone areas, 3-month the number of dry days and 2-month total precipitation gave the highest 

correlation to the burned area. The joint distribution is constructed using a rotated copula based on 

ENSO and IOD conditions from these two variables. Based on the peak of joint PDFs, ENSO and 

IOD conditions did not significantly affect the rainy season but substantially in the dry season. 

However, based on coincidence probability, ENSO conditions still influence the joint distribution of 

the number of dry days and total precipitation during the rainy season but not with IOD conditions. 
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Moreover, the association between the number of dry days and the total precipitation was stronger in 

the dry season than in the rainy season. 

Although the copula is a powerful technique for accessing the joint distribution between variables 

that are not normally distributed, this method relies heavily on selecting the marginal distribution as 

the edges of the copula. This study only focuses on time-independent distribution functions, so climate 

change is not considered in the analysis here. The use of time-varying copula can improve further 

understanding and make the joint distribution model more precise (Ausin & Lopes, 2010; Xu et al., 

2021). In addition, high-dimensional copulas can be used in the same analysis by making the ENSO 

or IOD index as one of the edges of the copula. This means that the joint distribution model used is 

no longer divided based on ENSO or IOD categories, but the joint distribution model that is formed 

can assess the behavior of climate indicators based on the movement of the ENSO or IOD index using 

tri-variate copulas or more, such as nested Archimedean copula (Zhao et al., 2022). 
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