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ABSTRACT: 

The precision of sea surface temperature (SST) from remote sensing data is essential to recognize 

SST fluctuations prompted by extreme weather conditions due to global climate warming, such as 

tropical cyclones (TCs). Since 1981 the active remote sensing of satellite-based SST measurements 

has been around and proliferating to date in Indonesia. However, there has not been much research 

on the validation of several remote sensing datasets in Indonesia’s seas that has limited coverage of 

buoy observations. Moreover, no studies correspond to which data are the most precise in describing 

SST fluctuations in tropical storms. In this study, six remote sensing/satellite (Operational Sea 

Surface Temperature and Sea Ice Analysis (OSTIA), Regional Australian Multi-Sensor SST 

Analysis (RAMSSA), Global Australian Multi-Sensor SST Analysis (GAMSA), Microwave 

Infrared Optimally Interpolated (MWIROI), Multi-scale Ultra-high Resolution (MUR), and 

K10) data are validated and compared to analyze SST fluctuations in TC as a case study. The 

validation method uses the Haversine distance formula to reach the highest quality iQuam data with 

satellite data. The comparison analysis is performed by plotting the SST and wind slop in a TC area. 

Based on the validation, The OSTIA, RAMSSA, GAMSSA, and MWIROI datasets ranked in the 

top 4 of the smallest RMSEs with values < 0.5. Moreover, in the SST and wind slop in a TC area, 

TC affects SST cooling as detected in the MUR and K10 datasets where there is a decrease of > 2 

ºC. In the MWIROI, the decline is more noticeable significant > 3 ºC. 
 

Keywords: Validation, Sea Surface Temperature, Remote Sensing, Tropical Cyclone. 

 

1. INTRODUCTION 

 

SST is an essential and fundamental parameter in the global oceanic atmospheric system (Xu et 

al., 2021; Xiao et al., 2019). The SST is used to understand, monitor, and predict heat, gas flow, and 

momentum at various scales that define complicated interactions between the atmosphere and ocean 

(O’Carroll et al., 2019; Small et al., 2008). Currently, the global climate change is altering due to 

human activities, particularly those that generate the release of greenhouse gases from fossil energies 

(Mcmichael et al., no date). Climate change has significantly affected marine, aquatic, and terrestrial 

lives. The most noticeable effect is the accumulation of heightened doses of carbon dioxide in the 

atmosphere, responsible for the greenhouse effect.  
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The oceans have absorbed heat from greenhouse gas emissions, which contribute to the rising 

SST (Rhein et al., 2013). SST changes can lead to extreme weather and natural disasters, such as 

droughts and floods, affecting various environmental conditions, dynamics (Herbert et al., 2010), 

and tropical storms droughts (Upadhyay, 2020; Aboulnaga, Elwan and Elsharouny, 2019). Thus, 

recognizing SST fluctuations is the first step in detecting possible climate changes because the SST 

is an essential variable in climate change studies. 

The accurate knowledge of the distribution and time changes of the SST is increasingly 

essential. Moreover, the SST is the first marine variable to be studied from Earth observation 

satellites and is easily measured by satellites and in situ sensors (Minnett et al., 2019; Donlon et 

al., 2007). Moreover, it is required as an input to forecasting systems to determine the modeling of 

ocean circulation and energy exchange (Donlon et al., 2007). 

The dynamic flow of satellite-based SST measures has been around since 1981 (Merchant et 

al., 2019; O’Carroll et al., 2019; Donlon et al., 2007). Together with the general in situ 

measurements forming the modern era SST observation system, the numeral and variety of sensors 

have dramatically expanded and continued to rise (O’Carroll et al., 2019; Martin, 2014). Prior 

satellite missions donating to the current and current constellation of SSTs have been described by 

(O’Carroll et al., 2019). SST data were a mature component of observation systems in 1998 and 

data products with proven capabilities (Bell et al., 2009). However, the availability of these 

products is limited to large datasets and is challenging to obtained in near real-time (NRT), (Donlon 

et al., 2007; O’Carroll et al., 2019), while the demand for SST data applications continues to grow. 

The Global Ocean Data Assimilation Experiment (GODAE) has defined the minimum data 

specification for operational marine models as a solution to this problem  (Bell et al., 2009), 

Accordingly Group for High-Resolution Sea Surface Temperature (GHRSST previously, GODAE 

High-Resolution Sea Surface Temperature Pilot Project) was formed to address the specifications 

(Donlon et al., 2009) for SST needs in the global coverage: a minimum spatial resolution of 10 

km, updated every 6 hours and minimum accuracy of 0.2 ºC (Smith and Koblinsky, 2001).  

The large volume of satellite information generated by GHRSST-Pilot Project (PP) requires, 

among other things, coordination between data providers (for each satellite sensor) and users, 

quality control (QC)and archiving methods, and data distribution tools (Robinson, 2004; Robinson, 

2010). Jet Propulsion Laboratory (JPL)’s Physical Oceanography Distributed Active Archive 

Center (PO.DAAC) has developed infrastructure to fulfill the requirements of this project, 

including NRT (Armstrong et al., 2011; Luquire, 2021). PO.DAAC has also been building a 

metadata repository since 1993, where the metadata for each L2P product are ingested into an 

externally accessible database through a web-based search (Armstrong, Bingham and Vazquez, 

2004). 

They were generated from a wide variety of data by the PO.DAAC as remote sensing SST 

validation is very important to determine the precision of SSTs in recognizing SST fluctuations in 

global warming and climate prediction (Hausfather et al., 2017). The accuracy of SSTs from 

remote sensing data is one of the essential factors in climate and marine analysis (Sukresno, 

Jatisworo and Hanintyo, 2021). Validating daily remote sensing data with in situ data is required 

to bring high-quality remote sensing data. 

In general, remote sensing SST validation is performed with data in situ measurements from  

buoys (Castro, Wick and Steele, 2016a; Hao et al., 2017; Reddy et al., 2018). Several studies on  

remote sensing SST data validation in Indonesia have been conducted (Irawan et al., 2004; 

Sukresno et al., 2018; Sukresno, Jatisworo and Hanintyo, 2021). However, due to Indonesian 

waters and limited buoy observation data, SST validation within the Indonesian seas is challenging. 

Furthermore, Indonesian waters/seas are considered essential as they have different SST 

characteristics in each region and are located between the Pacific and Indian Oceans, so they are 

semi-closed (Putra, Karang and Putra, 2019).  

The validation of remote sensing SST data is important to determine the best dataset to be used 

in the Indonesian seas. Validations that have been performed generally only consider the general  
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state of data and very rarely focus on extreme events. In this study, we want to re-test whether 

validated data can capture extreme phenomena that quickly take place and whether there is a decrease 

in the SST caused by a TC event as a case in point. Datasets selected through validation tests and 

extreme phenomena are expected to describe a phenomenon and can be utilized in the analysis and 

prediction of extreme weather conditions. 

In this study, six-remote sensing/satellite JPL PO.DAAC (Operational Sea Surface Temperature 

and Sea Ice Analysis (OSTIA), Regional Australian Multi-Sensor SST Analysis (RAMSSA), Global 

Australian Multi-Sensor SST Analysis (GAMSA), Microwave Infrared Optimally Interpolated (MWIROI), 

Multi-scale Ultra-high Resolution (MUR), and K10) data were validated. The validation method was 

carried out by comparing the highest quality iQuam data with satellite data using the Haversine 

distance formula. An analysis was conducted through an error approach, standard deviation, and 

bias, where most minor errors and bias values are expected. This study performed the earliest remote 

sensing SST data validation investigation to identify SST changes that occur due to extreme weather 

events, such as TCs. The validation and comparison analysis were deployed in an open-source 

Python language and available at https://github.com/bowoadi/sst-validation.   

 

2. DATA AND METHODS 

2.1. Data 

2.1.1. Dataset SST 

Six types of interpolated SST L4 analysis remote sensing datasets were used in this study in 2021 

in the coordinates of Indonesia’s territory with latitude –12º – 12º and longitude 91º – 147º. The data 

were acquired from the NASA’s JPL Physical Oceanography Distributed Active Archive Center 

(http://podaac.jpl.nasa.gov). The daily dataset is presented in Table 1:  

 
                                                                                                                                             Table 1. 

Satellite data L4 SST products. 

No Product Name Spatial 

Resolution 

Number of Data   Sensor 

1 K10 (JPL), 2018) 0.1º 49.056.000 4, 7 

2 MWIROI 

(Systems, 2017) 
0.09º 60.555.392 5, 6, 8 

3 OSTIA (UKMO, 

2012) 
0.054º 168.220.274 3, 4, 7, 8 

4 RAMSSA 

(ABOM), 2019b) 
0.083º 71.206.895 1, 2, 4 

5 GAMSSA 

(ABOM), 2019a) 
0.25º 7.848.960      1,2 

6. MUR (NASA/JPL, 

2019) 
0.25º 7.848.960 1, 2, 3, 5, 6 

1= Buoys GTS   3= AVHRR NOAA    5= MODIS Aqua,Terra    7= Seviri 

2= Ships GTS    4= AVHRR MetOp  6= WindSat            8= TMI TRMM 

  

https://github.com/bowoadi/sst-validation
http://podaac.jpl.nasa.gov/
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The Naval Oceanographic Office (NAVOCEANO) K10 SST operates satellite data only and 

merges L2 SST products in the presented average weight to describe the SST at a depth of 1 m, and 

this is one of the results of L4 that does not use the OI technique. All IR inputs are developed by 

NAVOCEANO using a separate nonlinear regression qualified against a control-powered GTS float 

buoy from the previous month. (May et al., 1998). 

MW data are excellent at capturing water levels with persistent turbidity where “the all-weather” 

MW sensor coverage improves accuracy. As shown (in the study by Brasnett (2008), MW and IR 

data contribute equal measure to the quality analysis for some of these analyses. Hence, the 

implementation (accuracy) of L4 products compared here, particularly those depending on MW data, 

is positively compromised.  

The Remote Sensing System (REMSS) MWIR (MWIR) SST products use OI analysis and 

satellite data only (http://www.remss.com/measurements/sea-surface-temperature/oisst-

description). Inputs are calibrated for daytime use using empirical heating models. The foundation 

SST product was initially designed for the National Hurricane Center to use the Statistical Hurricane 

Intensity Projection (SHIPS) model for considering storm intensity. (Castro, Wick and Steele, 

2016b). The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA), (Brasnett, 2008) 

is assembled daily by the UK Met Office and is used as an operational boundary condition in the 

NWP and Digital Marine Forecasting in the Met Office and European Centre for Medium-Range 

Forecasting (ECMWF). OSTIA systems typically imported MW data from AMSR but have limited 

WindSat SST imports during period gaps using OI analysis. Input data are filtered to eliminate 

daytime observations with winds < 6 m/s to eliminate probable examples of daytime heating. 

Although provided at 0.05º (~ 6 km), the OSTIA SST grid is actually in an acceptable design  

(Donlon et al., 2007). 

In high-resolution operations, the Regional Australian Multi-Sensor Sea surface Australia 

temperature Analysis (RAMSA) has developed Bureau of Meteorology (BOM) within Australia’s 

Blue-Ocean Ocean project. The new RAMSA system combines SST data from infrared and 

microwave sensors at spin to produce SST foundation estimates. The main difference between the 

RAMSA and other analyses of other SST foundation analyses are associated with RAMSA’s 

methods for implementing advanced systems and determining weights for different data entry 

streams and bias edits, iFremer, and Met Office analysis systems among all. satellite input data using 

SST data from the Advanced Along Track Scanning Radiometer (AATSR), (Beggs et al., 2011). 

The BOM produces daily SST foundation analysis at a resolution of 0.25º as the Global 

Australian Multi-Sensor SST Analysis (GAMSSA). It is used as a boundary requirement in the 

global NWP system and is an extension of the regional L4 product 0.083º (Beggs et al., 2011). 

The Multi-scale Ultra-high Resolution (MUR) is produced daily by NASA’s JPL. Unlike other 

outcomes that use standard OI techniques, the MUR system uses a statistical interpolation method 

based on wavelet analysis known as the multiresolution variation examination (Mallat, 1989). This 

multi-scale signal reconstruction technique is excellent for processing multiple spatial resolutions 

of L2 products used in different satellites’ analysis and irregular swath patterns (Chin, Milliff and 

Large, 1998). The main contribution of this product is fit spatial resolution (horizontal) and the 

capability to handle high-resolution SST features such as fronts. 

2.1.2. iQuam 

iQuam is an in-situ dataset developed by the NOAA Center for Satellite Application and 

Research (STAR). Measurement data are obtained from ships, drifters, ARGO floats, and tropical 

mooring data. The data are been processed with strict quality control so that the in situ data obtained 

are reliable (Sukresno, Jatisworo and Hanintyo, 2021), as presented in Fig. 1. The present study used 

the iQuam dataset obtained from all measurements from ships, drifters, ARGO float, and tropical 

mooring data in 2021, with 156,152 datasets in total. The iQuam dataset is downloaded through the 

NOAA:   https://www.star.nesdis.noaa.gov/sod/sst/iquam/data.html (accessed February 20, 2022). 

The iQuam dataset used in SST validation has a similar spatial distribution throughout the 

Indonesian seas. 

http://www.remss.com/measurements/sea-surface-temperature/oisst-description
http://www.remss.com/measurements/sea-surface-temperature/oisst-description
https://www.star.nesdis.noaa.gov/sod/sst/iquam/data.html
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Fig. 1. Scatterplot among the six datasets against iQuam, a) OSTIA, b) RAMSSA, c) GAMSSA,  

d) MWIROI, e) MUR, f) K10. 

  

2.1.3. Surface Wind 

To comprehend the physical pressure of TCs, as an example of a case in the trial on the TC 

Seroja event, surface wind data from Cross Calibrated Multi-Platform (CCMP) version 2.0 grid 

analyzed surface winds between March 31 and April 15, 2021 were used. The CCMP used is a level 

3 marine wind vector product produced from satellites, mooring buoys, and wind data models. The 

temporal and spatial resolutions of the surface wind data were 6 h and 0,25º × 0,25º. The CCMP 

accuracy is more elevated than other wind reanalysis data (Atlas et al., 2011). This dataset can be 

downloaded from https://www.remss.com/measurements/ccmp/  (accessed February 25, 2022).  

2.2. Methods 

The extraction of six SST datasets was carried out in situ according to the data location iQuam 

at the same spot and time. The filtering process was performed by taking the highest-quality iQuam 

data. Each of the datasets was positioned with an iQuam dataset on the same acquisition day. The 

validation employs the Python program language with the following validation algorithm using the 

Haversine distance formula.                     

 

Input:       

𝐏 = {𝑃0,0, … , 𝑃𝑛−1,𝑚−1}, 𝑃𝑖,𝑗 =  (𝑃𝑥𝑖 , 𝑃𝑦𝑗 , 𝑃𝑡𝑖,𝑗), 𝑖 = 0,1 … , 𝑛 − 1,

𝑗 = 0,1 … , 𝑚 − 1 

𝐐 = {𝑄0, … , 𝑄𝐾−1}, 𝑄𝑘 =  (𝑄𝑥𝑘 , 𝑄𝑦𝑘 , 𝑄𝑡𝑘), 𝑘 = 0,1 … , 𝐾 − 1 

Process:  

𝐓 = {𝑇0, … , 𝑇𝐾−1}, 𝑇𝑘 = −1, 𝑘 = 0,1 … , 𝐾 − 1 

𝑘 = 0 

For each 𝑘 < 𝐾: 
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 𝑙𝑜 = 0 

 ℎ𝑖 = 𝑛 

 While 𝑙𝑜 < ℎ𝑖 do:   // Find leftmost value greater than or equal to 𝑄𝑘 in longitude 

  𝑚𝑖𝑑 = 𝑐𝑒𝑖𝑙_𝑡𝑜_𝑖𝑛𝑡𝑒𝑔𝑒𝑟( 
𝑙𝑜+ℎ𝑖

2
 )   

  If 𝑃𝑥𝑚𝑖𝑑 < 𝑄𝑥𝑘: 

   𝑙𝑜 = 𝑚𝑖𝑑 + 1 

  Else: 

   ℎ𝑖 = 𝑚𝑖𝑑 

 𝑥̂ =  𝑙𝑜 

 𝑙𝑜 = 0 

 ℎ𝑖 = 𝑛 

 While 𝑙𝑜 < ℎ𝑖 do:   // Find leftmost value greater than or equal to 𝑄𝑘 in latitude 

  𝑚𝑖𝑑 = 𝑐𝑒𝑖𝑙_𝑡𝑜_𝑖𝑛𝑡𝑒𝑔𝑒𝑟( 
𝑙𝑜+ℎ𝑖

2
 )   

  If 𝑃𝑦𝑚𝑖𝑑 < 𝑄𝑦𝑘: 

   𝑙𝑜 = 𝑚𝑖𝑑 + 1 

  Else: 

   ℎ𝑖 = 𝑚𝑖𝑑 

 𝑦̂ =  𝑙𝑜 

 𝑙𝑜 = 0 

 ℎ𝑖 = 𝑛 

 While 𝑙𝑜 < ℎ𝑖 do:   // Find rightmost value less than or equal to 𝑄𝑘 in longitude 

  𝑚𝑖𝑑 = 𝑐𝑒𝑖𝑙_𝑡𝑜_𝑖𝑛𝑡𝑒𝑔𝑒𝑟( 
𝑙𝑜+ℎ𝑖

2
 )   

  If 𝑄𝑥𝑘 < 𝑃𝑥𝑚𝑖𝑑 : 

   ℎ𝑖 = 𝑚𝑖𝑑 

  Else: 

   𝑙𝑜 = 𝑚𝑖𝑑 + 1 

 𝑥̌ =  𝑙𝑜 − 1 

 𝑙𝑜 = 0 

 ℎ𝑖 = 𝑚 

 While 𝑙𝑜 < ℎ𝑖 do:   // Find rightmost value less than or equal to 𝑄𝑘 in latitude 

  𝑚𝑖𝑑 = 𝑐𝑒𝑖𝑙_𝑡𝑜_𝑖𝑛𝑡𝑒𝑔𝑒𝑟( 
𝑙𝑜+ℎ𝑖

2
 )  

  If 𝑄𝑦𝑘 < 𝑃𝑦𝑚𝑖𝑑 : 

   ℎ𝑖 = 𝑚𝑖𝑑 

  Else: 

   𝑙𝑜 = 𝑚𝑖𝑑 + 1 

 𝑦̌ =  𝑙𝑜 − 1 

𝑑𝑥,𝑦̂

=  2 ∙ 𝑅

∙ arcsin (√sin (
(𝑃𝑦𝑦̂ − 𝑄𝑦𝑘)

2
)

2

+ cos (𝑄𝑦𝑘) ∙ cos (𝑃𝑦𝑦̂) ∙ sin (
(𝑃𝑥𝑥 − 𝑄𝑥𝑘)

2
)

2

) 

 

𝑑𝑠𝑚𝑖𝑛 = 𝑑𝑥,𝑦̂ 

𝑡𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 = 𝑃𝑡𝑥,𝑦̂ 

𝑑𝑥,𝑦̌

=  2 ∙ 𝑅

∙ arcsin (√sin (
(𝑃𝑦𝑦̂ − 𝑄𝑦𝑘)

2
)

2

+ cos (𝑄𝑦𝑘) ∙ cos (𝑃𝑦𝑦̂) ∙ sin (
(𝑃𝑥𝑥 − 𝑄𝑥𝑘)

2
)

2

) 
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If 𝑑𝑠𝑚𝑖𝑛 > 𝑑𝑥,𝑦̌: 

𝑑𝑠𝑚𝑖𝑛 = 𝑑𝑥,𝑦̌ 

𝑡𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 = 𝑃𝑡𝑥,𝑦̌ 

𝑑𝑥,𝑦̂

=  2 ∙ 𝑅

∙ arcsin (√sin (
(𝑃𝑦𝑦̌ − 𝑄𝑦𝑘)

2
)

2

+ cos (𝑄𝑦𝑘) ∙ cos (𝑃𝑦𝑦̌) ∙ sin (
(𝑃𝑥𝑥 − 𝑄𝑥𝑘)

2
)

2

)  

 

If 𝑑𝑠𝑚𝑖𝑛 > 𝑑𝑥,𝑦̂: 

𝑑𝑠𝑚𝑖𝑛 = 𝑑𝑥,𝑦̂ 

𝑡𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 = 𝑃𝑡𝑥,𝑦̂ 

𝑑𝑥,𝑦̌

=  2 ∙ 𝑅

∙ arcsin (√sin (
(𝑃𝑦𝑦̌ − 𝑄𝑦𝑘)

2
)

2

+ cos (𝑄𝑦𝑘) ∙ cos (𝑃𝑦𝑦̌) ∙ sin (
(𝑃𝑥𝑥 − 𝑄𝑥𝑘)

2
)

2

) 

 

If 𝑑𝑠𝑚𝑖𝑛 > 𝑑𝑥,𝑦̌: 

𝑑𝑠𝑚𝑖𝑛 = 𝑑𝑥,𝑦̌ 

𝑡𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 = 𝑃𝑡𝑥,𝑦̌ 

 𝑘 = 𝑘 + 1 

 

𝑷 is the SST satellite data that contain matrix data structures 𝑛 × 𝑚 with value 𝑃𝑖,𝑗 =

 (𝑃𝑥𝑖 , 𝑃𝑦𝑗 , 𝑃𝑡𝑖,𝑗), 𝑖 = 0,1 … , 𝑛 − 1, 𝑗 = 0,1 … , 𝑚 − 1, where  𝑃𝑥𝑖 is the longitude on the line to-𝑖, 

𝑃𝑦𝑗 is latitude in the column to-𝑗, and 𝑃𝑡𝑖,𝑗 is the SST on the line to-𝑖 and column to-𝑗. The values 

𝑃𝑥 and 𝑃𝑦 have been sorted.  

𝑸 is the high-quality iQuam data that contain a flat-array data structure with a size 𝐾 and value 

𝑄𝑘 =  (𝑄𝑥𝑘 , 𝑄𝑦𝑘 , 𝑄𝑡𝑘), 𝑘 = 0,1 … , 𝐾 − 1, where 𝑄𝑥𝑘 is the longitude on the array to-𝑘, 𝑄𝑦𝑘 is the 

latitude on the array to-𝑘, and 𝑄𝑡𝑘 is the SST on the array to-𝑘. 

𝑹 is the estimated radius used in the calculation of distance between points using the formula 

Haversine distance, which has a value of 6373. 

 

Iterations were performed for each 𝑘. The point closest to 𝑄𝑘, was determined based on four 

conditions, namely, leftmost point with value 𝑃𝑥𝑖 (more than the same as 𝑄𝑥𝑘 as 𝑥̂), leftmost point 

with value 𝑃𝑦𝑖  (more than the same as 𝑄𝑦𝑘  as 𝑦̂), the rightmost point with the value 𝑃𝑥𝑖 (less than 

the same as 𝑄𝑥𝑘 as 𝑥̌), and the rightmost point with value 𝑃𝑦𝑖  (less than the same as 𝑄𝑦𝑘  as 𝑦̌). Then 

the four conditions were combined into four points, namely {(𝑥̂, 𝑦̂), (𝑥̌, 𝑦̂), (𝑥̌, 𝑦̂), (𝑥̌, 𝑦̌)} each 

calculated with distance 𝑄𝑥𝑘 and 𝑄𝑦𝑘 . Then the one that has the shortest distance was selected. The 

difference in the SST value was obtained by reducing the 𝑄𝑡𝑘 value with SST satellite value from 

the point with the shortest distance. 

2.2.1. RMSE, Standard Deviation, and Bias 

Statistical testing to witness the proximity of remote sensing data to iQuam was conducted using 

RMSE, standard deviation, and bias. The smallest value indicates a better error with observational 

data (Hidalgo García, 2021). 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑𝑖=1

𝑛 (𝑆𝑆𝑇 𝐼𝑛 𝑆𝑖𝑡𝑢𝑖 − 𝑆𝑆𝑇 𝑆𝑎𝑡𝑒𝑙𝑖𝑡𝑖)
2                                                                   (1)     
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3. RESULTS AND DISCUSSION 

3.1. SST Dataset Validation 

The initial comparison of six-satellite datasets against the iQuam dataset was carried out by 

displaying the plot scatter of the six data on 2021 presented in Fig. 1 and daily data distribution that 

describes the state of remote sensing and iQuam sorted according to the smallest RMSE values as 

presented in Table 2. Data adjacent to diagonal lines indicates a good distribution of data, as can be 

seen from root mean square error (RMSE) and slight standard deviation. RMSE, standard deviation, 

and bias are shown in Table 2 in the order from the smallest RMSE values. OSTIA has the smallest 

RMSE and standard deviation values with 0.425 and 0.461, respectively. MUR has the lowest bias 

value with 0.045. 
Table 2.  

RMSE values, standard deviations, and biases of six datasets against iQuam. 

No Name RMSE Standard Dev Bias 

1 OSTIA 0.425 0.461 –0.079 

2 RAMSSA 0.451 0.488 –0.073 

3 GAMSSA 0.454 0.489 –0.076 

4 MWIROI 0.471 0.529 –0.143 

5 MUR 0.516 0.541  0.045 

6 K10 0.620 0.648 –0.078 

 

Remote sensing data with an RMSE value of < 0.5 were taken to show the error distribution. The 

results of the spatial error value interpretation are presented in Fig. 2. All Indonesian seas have a 

reasonably acceptable error value, ranging from –0.5 to 0.5, symbolized by a bluish-green color. 

However, the error value is quite significant, ranging from 1 to 2 among the Karimata Strait, 

Makassar Strait, and around the Aru Sea. 

 

  

 

  

 

Fig. 2. Distribution of error values in 2021 across Indonesian territorial waters a) OSTIA,  

b) RAMSSA, c) GAMSSA, and d) MWIROI. 
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The validation tests concluded that the selected datasets with RMSE values and minor standard 

deviations were owned on the OSTIA, RAMSSA, GAMSSA, and MWIROI datasets. Similarly, by 

proving the distribution of error values in 2021, shown in Fig. 2, the four datasets have a reasonably 

small error value in almost all areas of Indonesian waters ranging from –0.5 to 0.5. 

3.2. Sensitivity Tests for Extreme Weather Events 

Although Indonesia is an equatorial tropical country, TC events occur pretty often as will be 

stated in the discussion below. From 2010 to 2021, at least five TCs have had quite an impact on 

Indonesia. In the previous discussion, the validation results of the six datasets were well known. 

Nonetheles, we also wanted to know how each SST dataset responded to TC events and whether 

each dataset captured an extreme weather phenomenon that quickly took place.   

The SST is a critical factor in the supply of energy for a TC or storm and affects not only its 

formation (Gray, 1968; Gray, 1975; Emanuel, 1986; Wang et al., 2007) but also the trace and 

intensity of the TC (Emanuel, 1999; Schade and Emanuel, 1999; Mei et al., 2015). Even if 

atmospheric conditions are promising, TC will not develop if the SST is low (Lin et al., 2008) and 

difficult to occur in SSTs < 26 ºC (Emanuel, 2003). In the ocean region bordering the Indonesian 

seas, especially in the southeastern part of the tropical Indian Ocean, several TCs have occurred, 

such as Anggrek (October 31 – November 4, 2010), Bakung (December 10 – 13, 2014), Cempaka 

(November 25 – 27, 2017), Dahlia (November 27 – December 2, 2017), (Paterson, 2012; Gutro, 

2014; Samodra et al., 2020; Yang et al., 2020; Aditya et al., 2021) and Seroja ; Latos et al., 2022). 

TC events can cause critical oceanic phenomena in the form of cooling SSTs (Hazelworth, 1968; 

Stramma, Cornillon and Price, 1986; Leipper, 1967; Lin et al., 2013). According to (Yang et al., 

2020) the effect of TCs on the oceans has changed the thermal stratification of the upper part of the 

oceans in the southeastern part of the tropical Indian Ocean by decreasing the SST   (> 1.5 ºC). This 

paper also sees a decrease in SSTs for TC events in Malakas, Megi, and Chaba (Li et al., 2020), but 

no studies have specified  which remote sensing/satellite data are the most precise in describing SST 

fluctuations in tropical storm. 

As a case study, this research will be indicating the development of TC Seroja using several plot 

areas on the TC development based on wind and SST data presented in Figs. 3, 4 and 5. As shown 

in Fig. 3, on April 1, a strong east wind appeared around the eastern island of Timor. On April 3, 

wind speeds increased by > 18 m/s in the Sawu Sea (SS) and Northern Australia. The existence of 

wind patterns on April 3 is the initial stage of the development of TC Seroja, with wind speeds of 

approximately about 18 – 20  m/s. The cyclone wind speed of > 23 m/s in the core eye of the TC 

indicates that TC Seroja fully developed on April 4 and lasted until April 6, 2021. These finding are 

in line with research  (result of Setiawan et al., 2021).  

The Validation of six datasets in the TC Seroja case study was also observed through the SST 

plotting with the wind (Fig. 4). SST heating can be an early sign of a fast-paced TC event (65). The 

heating SST of > 30.5 ºC occurred since March 28, 2021, on almost all datasets. Although the heating 

is quite extreme, an SST 30.8 ºC occurred in the K10 and MUR datasets on March 28 – 30, but the 

dataset could describe the SST condition, which was quite extreme at the time of the full TC 

development. An increase in the wind speed can cool the surface air temperature during the TC 

development.  The effect of wind occurring in extremes on April 2 – 8, 2021, as explained in Fig. 

4, along with the decline in SSTs, was very noticeable until the SST reached > 1.5 ºC in the MWIROI 

and MUR datasets, whereas in the other datasets (OSTIA, RAMSSA, GAMSSA, and K10), the SST 

decrease when wind speed increase was relatively not very noticeable and tend to take place more 

slowly. Hence, when the wind weakened, the SST of the other datasets only decreased, which is an 

unnatural thing. 

The SST cooling event that occurred during the full development of the TC on April 4 – 6, 2021 

is presented in Fig. 5 to detect the precision of remote sensing SST datasets against TC extreme 

events. The SST maps, SST temperature and wind line in a latitude of –11 º are shown for 

comparison. 



78 

 

 

Fig. 3. Wind speed (m/s) on April 1 – 15, 2021. 

 
Fig. 4. Time series of the six datasets SST and wind speed of the Savu Sea on  March 28 – Apr 31, 2021, 

(average area is 121 – 125ºE; 8 – 11ºS similar with the research finding in Setiawan et al., 2021. 

 

The strong effect of TC Seroja as presented in Fig. 5 (top) shows the decrease in the SST in 

almost all remote sensing data. The wind effect Fig. 5 (bottom) shown with a slop line during the 

full TC formation can cause the cooling of SST, as an identification of the precision of remote 

sensing SST six datasets along with the increase in the wind during the full formation of TC Seroja 

on April 4 – 6, 2021. On April 4, 2021, a maximum wind speed of approximately > 15 m/s occurred 

in the longitude 122.5º – 123º, along with a more noticeable decline in SSTs in the MWIROI and 

MUR datasets.  

- 6

- 8

- 10

- 12

- 14

- 6

- 8

- 10

- 12

- 14

- 6

- 8

- 10

- 12

- 14
- 6

- 8

- 10

- 12

- 14

- 6

- 8

- 10

- 12

- 14
110 115 120 125 130 110 115 120 125 130110 115 120 125 130

9 Apr

1 Apr 2 Apr 3 Apr

4 Apr 6 Apr

8 Apr

10 Apr 11 Apr 12 Apr

13 Apr 14 Apr 15 Apr

5 Apr

7 Apr



 Restu TRESNAWATI, Anindya WIRASATRIYA and Adi WIBOWO / ACCURACY PERFORMANCE OF  … 79 

 

By contrast, in the other four datasets, the decline in the SSTs is not very noticeable. On April 5, 

2021, the maximum wind speed increased to > 22.5 m/s, including the strong gale on the Beaufort 

scale. Moreover, a relatively sharp decrease in SSTs was observed in the MWIROI and MUR 

datasets, where there is a drop until 3 ºC.  

As presented in Fig. 5 the traces of cyclones of the MUR and K10 datasets are visible on April 

5 – 6, 2021, with cold SSTs ranging from 28 ºC to 29 ºC. OSTIA, RAMSSA, and GAMSSA almost 

look the same, but the traces of cyclones are not very clear. Meanwhile, in the MWIROI dataset, a 

visible TC travel since April 4 is characterized by the cold SST ranging of 27.5 ºC – 28.5 ºC. On 

April 6, 2021, a maximum wind speed of up to 25 m/s for the decrease in the SST that occurred due 

to strong winds was most visible in the MWIROI dataset where there was a decrease to > 3 ºC from 

31.5 ºC to 28 ºC. Despite the RMSE value, MWIROI’s standard deviation and bias are not the 

smallest but can better describe the state of the TC, especially at the time of its full development.  

 

 

 
(a)

 
(b) 

(c) 
                

 

 

 

Fig. 5. Plotting SST (ºC) (top), SST (ºC) and wind (m/s) slope line in latitude of –11º (bottom) in at the time of 

full TC development; a) April 4, b) April 5 and c) April 6, 2021.  

 

Increased wind speeds from April 3 to 7 and the disappearance of winds toward the southwest 

can cool the SST, (Fig. 4 and 5).  
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Many factors can describe the total growth and development of TC Seroja in addition to the wind 

and SST. However, such formations fall outside the scope of this study, which focused on validating 

the remote sensing SST dataset against iQuam to detect TC Seroja events. 

The most visible cyclone trail is shown by MWIROI and MUR, where the decrease in the SST 

is evident from April 4 to 6, 2021. However, in the OSTIA, RAMSSA, and GAMSSA datasets, the 

decline in the SST is not very significant, which this happens because both have the same sensor, 

specifically MODIS Aqua and Terra. The twin-MODIS design aims aimed to optimize cloud-free 

imaging while minimizing the optical effects of shadows and glares that occur with morning and 

afternoon sunlight. In three different resolutions, i.e., 250 m, 500 m, and 1 km, MODIS data products 

help improve our understanding of global environmental processes and dynamics occurring on the 

land, oceans, and lower atmosphere. The MODIS data records help extend heritage data, such as 

NOAA’s Advanced Very High-Resolution Radiometer, thus ensuring the critical continuity of such 

collections to support our investigations of short- and long-term global environmental changes. 

MODIS-derived data products continue to play a vital role in helping develop and validate global 

Earth system models with sufficient predictive potential to inform and help policymakers address 

global environmental changes. 

The MWIROI dataset is relatively undisturbed by the cloud cover due to the combination of IR 

data with microwave data that can penetrate the cloud. (Li et al., 2020). In expansion, because this 

product was initially developed to estimate hurricane intensity, it may be better to capture SST-

related ocean extreme events. 

4. CONCLUSIONS 

In this study, six remote sensing/satellite datasets (OSTIA, RAMSSA, GAMSA, MWIROI, 

MUR and K10) were validated and compared to analyze and validate investigations to identify SST 

changes that occur due to extreme weather events, such as TCs. The validation method was 

performed by comparing the highest-quality of iQuam data with satellite data using the Haversine 

distance formula. The comparison analysis was performed by plotting the SST slope in a TC area.  

Based on the validation, the OSTIA, RAMSSA, GAMSSA, and MWIROI datasets ranked in the top 

4 with the smallest RMSE with a value i.e., < 0.5. Moreover, in a TC area, the TC Seroja wind speed 

increased by > 22.5 m/s on April 5, 2021, and SST cooling was detected in the MUR and K10 

datasets denoted by a decrease of > 2 ºC. For MWIROI, the decline was more noticeably significant 

as > 3 ºC. This finding shows that the MWIROI dataset can describe the extreme conditions of TC 

Seroja better than other datasets. The most visible cyclone trail is shown by MWIROI and MUR, 

where the decrease in the SST is highly evident from April 4 to 6, 2021. This happens because both 

have the same sensor, specifically MODIS Aqua,Terra and WindSat. The twin-MODIS design aim 

to optimize cloud-free imaging while minimizing the optical effects of shadows and glare that occur 

with morning and afternoon sunlight. The cyclone’s footprint was the most pronounced in MWIROI 

with a resolution of 0.09º because the product was initially designed to estimate storm intensity. This 

dataset can be used in future studies, especially for extreme weather or climate analysis. 
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