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ABSTRACT: 

The shifts in socio-economic development and climate conditions currently become the challenge for 

water resources system security in the Himalayan region. The aforesaid concern was found pertinent 

to the main objective of this study, which is to evaluate the combined impacts of climate and socio-

economic changes on likely future water security in the Himalayan basin, India. The future climate 

was projected by Multi-model Ensembles under the Representative Concentration Pathway (RCP) 4.5 

scenario. Land use projection under the Shared Socioeconomic Pathway (SSP) 1 scenario was 

performed using Markov Chain, whose transition probabilities were derived using multi-layer 

perceptron neural networks. The results showed that future annual precipitation and temperature at the 

downstream part will increase from baseline by 5% – 10% and 1.0oC – 1.55oC, respectively. The land 

use projections showed that irrigated areas will decrease for Punjab by 10% – 30% and Haryana by 

5% – 10% due to the increase in urbanisation, whereas it will be increased in Rajasthan by 12% – 18%. 

Consequently, the annual irrigation water demand was found to be decreased by 10% for Punjab and 

5% for Haryana, while it will be increased by 13% for Rajasthan. Eventually, the obtained findings 

will be beneficial for planning strategies to ensure water security in the Himalayan region, in particular 

the Beas-Sutlej basin.  

Key-words: climate change, multi-model ensembles, global climate models, land use change, reservoir 

management 

 

1. INTRODUCTION 

The Himalayas contain one of the largest freshwater resources in the world. The region is a source 

of ten major river systems that include the Indus and Ganges providing water for irrigation, 

hydropower generation, and domestic consumption for more than 20% of the world’s population 

(Mukherji et al., 2015). However, climate change and rapid socio-economic growth are threatening 

the quality and quantity of the region’s water resources (Dau and Kuntiyawichai, 2020).    

For India, the continued population growth is increasingly noticeable which may significantly 

affect the water security in the country. For instance, India is currently the world’s second most 

populous country but is expected to surpass China within the next few decades (Samir et al., 2018). 

Goyal and Surampalli (2018) stated that current 1.2 billion Indian population have experienced 

tremendous economic growth in the last 20 years with only 4% and 9% of the world’s water resources 

and arable land, respectively. Such a phenomenal growth of the population can only lead to higher 

domestic, industrial and agricultural water demands (Dau et al., 2021a).  
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The total cultivated land in India is approximately 183 M-ha (million hectares), which is about 

55% of the total area of the country (FAO, 2015). As per the Central Water Commission, water 

consumption in Indian agriculture accounted for 85.3% of the total withdrawal in 2000 with industry, 

energy, domestic, and other sectors accounting for 1.2%, 0.3%, 6.6%, and 6.4%, respectively (Mirza 

and Ahmad, 2005). It is obvious that water demand for agriculture is the sector with the highest water 

demand, which requires most attention to help if struggling in high demand, is of utmost importance 

and would consider to be the main focus of this study. Every year, India receives about 4,000 BCM 

(billion cubic meters) from precipitation including snowfall, with only 48% of this entering the surface 

and groundwater bodies, while the remaining 52% is lost as evapotranspiration (Dhawan, 2017). 

However, due to lack of adequate infrastructure and inappropriate water management, there is only 

20% out of 48% of the precipitation is actually used (Dhawan, 2017). The total annual utilizable water 

resources in the country are 1,123 BCM, whereof, 690 BCM is surface water and 433 BCM is 

groundwater (IRES, 2020). Groundwater withdrawal is estimated to be 231 BCM annually of which 

about 90% is used for irrigation, a much higher proportion than the global average of 40% (Siebert et 

al., 2010). In particular, this is a major problem in the northern region of India where groundwater 

level has fallen at the rate of 2 cm per year between 2002 and 2013 due to over extraction and poor 

recharge facility (Asoka et al., 2017).  

Climate change is also the main concern for India as shown in several recent studies that average 

temperatures in the Himalayas have already increased by 0.74°C in the past 100 years (Li et al., 2016, 

Du et al., 2004). This is due to its location in tropical latitudes where relatively high temperatures 

occur more frequently than in other regions of the world (Manish et al., 2016). Increasing 

temperatures will result in glacier losses and alteration of the hydrologic balance in the basin as stated 

by Kulkarni and Karyakarte (2014) that a vast loss in glacier mass from –9 ± 4 Gt.year-1 (1975 – 1985) 

to –20 ± 4 Gt.year-1 (2000 – 2010). These are significant losses for the major rivers in the region for 

which glacier currently contributes about 70% of their runoff (Singh and Bengtsson, 2004).  

Referring to the importance of the abovementioned issues, the objective of this study was to 

assess the possible impacts of climate and socio-economic changes on future water security in the 

Himalayan basin, India. To achieve its main objective, a more robust methodology for impact 

assessment was as follows: a statistical downscaling method called “Delta Change” was firstly applied 

to produce a watershed scale multi-model ensemble projections. The Markov chain modeling was 

also applied to monitor and predict the future land use pattern of the study area. Thereafter, both 

changes in climate and land use were then simulated by the WEAP water allocation model to enhance 

the understanding of future water security trend. For a better understanding of how the future climate 

will impact the surface water resources in the Himalayan basin, the Multi-model Ensembles (MME) 

of the Coupled Model Intercomparison Project phase 5 (CMIP5) global climate models, forced with 

the Representative Concentration Pathway (RCP) 4.5, and the Shared Socioeconomic Pathway (SSP) 

1 scenario – were considered. The selection of RCP 4.5 was due to the reduction of fossil fuel 

consumption, which can minimise a large amount of the carbon dioxide emission. In addition, the 

feedbacks from stakeholders, i.e. scientists from 3 different projects (CHANSE, UPSCAPE, and 

SusHi-Wat), policy-makers, and farmers, also suggested the SSP1 scenario since India has set a target 

to increase its renewable energy capacity of 175 GW by mid-century (Chaturvedi et al., 2020). The 

MME is a promising way to reduce uncertainties in present‐day simulations and to improve 

confidence in some aspects of future climate projections (Wang et al., 2018). The approach was used 

for this study because it shows the uncertainty across models in simulating the climate (Tebaldi and 

Knutti, 2007), which can be more reliable than using a single model (Dong et al., 2015). It is a matter 

of fact that the selected climate models operate at very coarse spatial scales, a technique called 

statistical downscaling was then used to derive climate information at finer spatial resolution from 

coarser spatial resolution GCM output by combining climate model projections with local/regional 

observations (Dau et al., 2017) (Note: this research used the statistical downscaling technique due to 

its efficient diagnostics to assess the GCMs reliability (Benestad and Haugen, 2007), with reasonable 

results comparable to dynamical downscaling (Penalba et al., 2014). 
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2. STUDY AREA 

The study area is the Beas-Sutlej basin, in the Western Himalayas, India, where about 2,673 km2 

(12% of the basin area) is covered by permanent snowfields and glacier (Singh and Bengtsson, 2004) 

(Fig. 1). The  Beas basin lies entirely in India with a total area of 12,569 km2 of which 780 km2 is 

situated in the upper part under permanent snow (Jain et al., 2007). The Sutlej basin covers an area of 

56,860 km2 with 22,275 km2 of this lying in India. There are two main reservoirs, i.e. the Pong and 

the Bhakra, that serve domestic, irrigation, hydropower generation, and flood control purposes 

(Adeloye et al., 2019). Climatologically, the basin is mostly influenced by tropical monsoon in which 

four seasons can be distinguished, i.e. winter (December – February), summer (March – May), rainy 

(June – August), and autumn (September – November). The mean annual precipitation is estimated 

between 1,200 mm and 1,800 mm, whereas the average temperature ranges from -10oC to +10oC 

depending on the altitude varying from 100 to 7,000 meters above mean sea level (MSL). There are 

large-scale schemes located in the irrigated lands or the so-called “command areas” in the States of 

Punjab, Haryana and Rajasthan (see Fig. 1). According to the information from Dhawan (2017), it 

can be summarized that rice, wheat and sugarcane are the largest India’s crop production with the 

proportion of 90% of country-wide production, in which they are considered to be the most water 

consuming crops. 

 

 

 
 

Fig. 1 The Beas-Sutlej River Basin. 

 
3. DATA AND METHODS 

It is of paramount importance to provide detailed information about the potential impacts of 

climate and socio-economic changes in order to enhance preparedness and adaptation strategies in the 

Himalayan basin, India, where the information about climate projections and hydro-climatic impacts 

is somehow questionable. To make it clear, Fig. 2 shows the workflow of this study, in which each 

component was described in the following sub-sections. 



4 

 

 
 

Fig. 2 The workflow for assessing the climate and socio-economic change impacts on future water security in 

the Himalayan basin, India 

3.1 Data collection 

The ERA-Interim historical reanalysis data over 1990 to 2007 (baseline) used in this study were 

dynamically downscaled to 5 km x 5 km using the Weather Research and Forecasting (WRF) model 

forced with atmospheric initial and boundary conditions for selected CMIP5 GCMs (Taylor et al., 

2012) as a baseline. Table 1 summarises all the CMIP5 GCM models used in this study, including 

the grid resolutions which represent the distance between adjacent grid points in degrees.  

Table 1.  

CMIP5 models and their grid resolutions 

No. Model acronym 
Atmospheric grid (o) 

No. Model acronym 
Atmospheric grid (o) 

Latitude Longitude Latitude Longitude 

1 ACCESS1.0 1.2500 1.8750 19 GISS-E2-H-CC 2.0000 2.5000 

2 ACCESS1.3 1.2500 1.8750 20 GISS-E2-HP1 2.0000 2.5000 

3 BCC-CSM1.1 2.7906 2.8125 21 GISS-E2-R-CC 2.0000 2.5000 

4 BCC-CSM1.1(m) 2.7906 2.8125 22 HadGEM2-AO 1.2500 1.8750 

5 BNU-ESM 2.7906 2.8125 23 HadGEM2-CC 1.2500 1.8750 

6 CanESM2 2.7906 2.8125 24 HadGEM2-ES 1.2500 1.8750 

7 CCSM4 0.9424 1.2500 25 INM-CM4 1.5000 2.0000 

8 CESM1(BGC) 0.9424 1.2500 26 IPSL-CM5A-LR 1.8947 3.7500 

9 CESM1(CAM5) 0.9424 1.2500 27 IPSL-CM5A-MR 1.2676 2.5000 

10 CMCC-CM 0.7484 0.7500 28 IPSL-CM5B-LR 1.8947 3.7500 

11 CMCC-CMS 3.7111 3.7500 29 MIROC-ESM 2.7906 2.8125 

12 CNRM-CM5 1.4008 1.40625 30 MIROC-ESM-CHEM 2.7906 2.8125 

13 CSIRO-Mk3.6.0 1.8653 1.8750 31 MIROC5 1.4008 1.4063 

14 EC-EARTH 1.1215 1.1250 32 MPI-ESM-LR 1.8653 1.8750 

15 FGOALS-g2 2.7906 2.8125 33 MPI-ESM-MR 1.8653 1.8750 

16 GFDL-CM3 2.0000 2.5000 34 MRI-CGCM3 1.1215 1.1250 

17 GFDL-ESM2G 2.0225 2.0000 35 NorESM1-M 1.8947 2.5000 

18 GFDL-ESM2M 2.0225 2.5000 36 NorESM1-ME 1.8947 2.5000 

CMIP5-GCMs  

(RCP 4.5) 

Delta Change Markov Chain 

ANN 

Reservoir 

Optimisation 

Land use 

prediction 
WEAP 

Future water 

security 

assessment 

Explanatory 

variables 
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The observed discharges and reservoir data, i.e. bathymetry, inflow/outflow, and hydropower 

capacity, were gathered from the Bhakra and Beas Management Board (BBMB) and relevant 

agencies. Land cover maps at 300 m resolution for the years 2000, 2005, and 2010 provided by the 

European Space Agency Climate Change Initiative (ESA-CCI) were utilized for explaining the 

variations of land use and vegetation due to social-economic changes.  

Domestic water demand was estimated from historical population in 2000 obtained from the 

Census of India and projected population (1-km grid cells) re-downscaled by Gao (2017) under SSPs. 

The SSPs (O’Neill et al., 2014) under five different pathways, i.e. sustainability-SSP1, middle of the 

road-SSP2, regional rivalry-SSP3, inequality-SSP4, and fossil-fuelled development-SSP5, were used 

for describing broad socio-economic trends that could shape future society. Accordingly, projected 

population under SSP1 scenario was used for this study.  

 

3.2 Global climate downscaling under RCP 4.5 using Delta Change approach 

A widely used technique called Delta Change suggested by (Lenderink et al., 2007) was chosen 

to correct the biases associated with the downscaled future projection data produced by a high 

resolution (5 km) WRF simulation obtained from (Bannister et al., 2019). The WRF model was forced 

by 18 baseline years of ERA-Interim historical reanalysis climate data (1990 – 2007) (Note: more 

details related to WRF model can be seen in (Bannister et al., 2019). For each GCM, the future 

projected climate data for each time horizon, e.g. mid-century (2033 – 2050), end-century (2083 – 

2100), etc., was carried out in order to obtain monthly delta changes in precipitation (∆𝑃𝐺𝐶𝑀) and 

temperature (∆𝑇𝐺𝐶𝑀) (Note: the selected time horizons were chosen in order to take into account the 

medium- and long-term effects of climate change on glacier melting, as suggested by previous studies 

(Nepal, 2016, Dau and Adeloye, 2021, Maurer et al., 2019). These changes were then applied to the 

WRF baseline (1990 – 2007) for providing the corresponding high-resolution future climate 

projection as shown in Eqs. (1) and (2).  

𝑃𝑚,𝑦
𝐹  =  𝑃𝑚,𝑦

𝐻𝑊𝑅𝐹
×  ∆𝑃𝑚

𝐺𝐶𝑀                                  (1) 

 𝑇𝑚,𝑦
𝐹   =  𝑇𝑚,𝑦

𝐻𝑊𝑅𝐹
+ ∆𝑇𝑚

𝐺𝐶𝑀                                                                                  (2) 

where, 𝑃 and T are the downscaled precipitation and temperature in month m and year y, respectively; 

𝐹 and H refer to a future time slice and historical period, respectively; ∆𝑃𝑚
𝐺𝐶𝑀  and ∆𝑇𝑚

𝐺𝐶𝑀 are changes 

between the future and baseline periods for each CMIP5 GCM which can be calculated as follows. 

 ∆𝑃𝑚
𝐺𝐶𝑀 = (

𝑃𝑚
𝐹𝐺𝐶𝑀

𝑃𝑚
𝐻𝐺𝐶𝑀)             (3) 

 ∆𝑇𝑚
𝐺𝐶𝑀 = (𝑇𝑚

𝐹𝐺𝐶𝑀
− 𝑇𝑚

𝐻𝐺𝐶𝑀
)       (4) 

  A simple statistical test was further carried out as given in Eq. (5). Skew coefficient (G) was 

then compared with the approximate 95% confidence limits for zero skew between the -1.96SE and 

+1.96SE interval, where SE is standard error of estimate of sample skew coefficient, approximately 

equal to √
6

𝑛
. If the skew coefficient falls within the 95% confident limits, then the null hypothesis that 

the skew is zero is not rejected (symmetrical distribution); otherwise, they are asymmetrical distribution.  

   𝐺 =  
𝑛 ∑ (𝑦𝑖−μ𝑦)

3𝑛
𝑖=1

(𝑛−1)(𝑛−2)σ𝑦
3                                                                                                                                  (5) 

where, G is skew coefficient; n is sample size; μ𝑦 and σ𝑦 are mean and standard deviation of y, 

respectively  



6 

 

3.3. Land use change projection 

The projection of land use changes was performed with the spatial model coupling Markov 

Chains proposed by (Marko et al., 2016). The Markov Chain model contains two main processes: the 

transition probability matrix (τ) describes the probability of land cover changes from one period to 

another (Eq. (6)); and a projection phase to determine the future land change patterns based on the 

information given in the first stage (Eq. (7)): 

τ = (

τ11 ⋯ τ1𝑛

⋮ ⋱ ⋮
τ𝑛1 ⋯ τ𝑛𝑛

)     
  ∑ τ𝑖𝑗=1 ;      𝑖,𝑗 ∈ N𝑛

𝑗=1

0≤τ𝑖𝑗≤1
                               (6) 

θ(𝑡+1) = τ × θt          (7) 

where, τ is the transition probability matrix; τ𝑖𝑗  represents the probability of the system 

transitioning from land use type i to j; n is the total number of land use types; and θ𝑡  and θ𝑡+1 are land 

use maps at time t, and t+1.  

 The determination of transition probability matrix requires relationship between land use 

patterns and factors known to influence them. Explanatory variables such as topographic conditions 

(elevation, slope, distance to urban, rivers, roads), and human interaction (population) were used to 

explain potential transition changes in land use. These driving factors were initially validated to 

determine the associations with each of classes in land use map using the Cramer’s V statistic (Cramér, 

1946) in Eq. (8).  

𝑉 = √
χ2

𝑛⁄

𝑚𝑖𝑛(𝑘−1,   𝑟−1)
                                   (8) 

where χ is chi-squared; n is the total of observations; and k and r are number of column and row 

in land use maps. 

The transition probability can be predicted using multi-layer perceptron (MLP) in neural network 

(Park and Lek, 2016). In the neural network architecture, explanatory variables were defined as nodes 

of the input layer, while land change pattern map between 2000 and 2005 was analysed to determine 

the observed potential transition probability that forms the nodes in the output layer. The study used 

50% of the sample size for training and the remaining 50% for testing. Land cover maps for the years 

2000 and 2005 were used for the training and testing and that for 2010 was used for validation. 

Numbers of hidden layer were determined based on the traditional trial and error approach.  

The model performance was assessed using R2. The Kappa Index of Agreements (Pontius, 2002) 

were also used to compare the observed “proportion correction” to the expected “proportion 

correction” due to chance for land use maps in 2010, in which a Kappa value greater than 0.75 is 

considered as very good to excellent agreement (Landis and Koch, 1977). 
 

3.4 Integrated reservoir operating and management 

In this study, a reservoir operation simulation program in WEAP (Water Evaluation And 

Planning) model, which was developed by the Stockholm Environment Institute (Sieber and Purkey, 

2011) and has been widely used in many regional water allocation problems (Dau et al., 2021a, Dau 

et al., 2018), was applied for determining optimal water allocation for each monthly time step based 

on demand priorities and supply preference. The optimal rule curves were developed based on Genetic 

Algorithm (GA), for a multiple purpose and combined within a single objective function (Eq. (9)), 

covering of irrigation water supply, hydropower, and flood control. As a result, the Upper Rule Curve 

(URC) and Lower Rule Curve (LRC) can be specified based on 24 decision variables for the design of 

reservoir release policies. 
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𝑓 =  𝑚𝑖𝑛 ∑ ∑ [(
𝐷𝑡

𝑖−𝑅𝑡
𝑖

𝐷𝑡
𝑖 )

2

+ (
𝑃𝑚𝑎𝑥

𝑖 −𝑃𝑡
𝑖

𝑃𝑚𝑎𝑥
𝑖 )

2

+ (
𝑚𝑎𝑥𝑍𝑡

𝑖−𝑍(𝐿𝑅𝐶𝑚
𝑖 )

𝑍(𝑈𝑅𝐶𝑚
𝑖 )−𝑍(𝐿𝑅𝐶𝑚

𝑖 )
)

2

]𝑇
𝑡=1

2
𝑖=1           (9) 

subject to the constraints: 

Water balance: 

𝑆𝑡+1 = 𝑆𝑡 + 𝑄𝑡  − 𝑅𝑡  − 𝐸𝑉𝑡                                                                (10) 

 

Hydropower generation: 

𝑃𝑚𝑖𝑛 ≤ 𝑃𝑡 ≤ 𝑃𝑚𝑎𝑥                   (11) 

 

𝑃𝑡 = min(η𝑔ρ𝑅𝑡𝐻𝑡
̅̅ ̅, 𝑃𝑚𝑎𝑥)                        (12) 

 

Flood control: 

𝑍𝑡(𝐿𝑅𝐶𝑚) ≤ 𝑍(𝑡) ≤ 𝑍𝑡(𝑈𝑅𝐶𝑚)                                 (13) 

𝑚𝑎𝑥𝑍 = min[(𝑎 × 𝑆𝑡
3) + (𝑏 × 𝑆𝑡

2) + (𝑐 × 𝑆𝑡) + 𝑑,  𝑍(𝑈𝑅𝐶𝑚)]                        (14) 

 

Irrigation water supply: 

𝐼𝑓 {

𝑊𝐴𝑡 ≥ 𝑈𝑅𝐶𝑚 , 𝑅𝑡 = 𝑆𝑡 + 𝑄𝑡 − 𝐸𝑉𝑡 − 𝑈𝑅𝐶𝑚  &  𝐸𝑅𝑡 = 𝑅𝑡 − 𝐷𝑡    
𝑈𝑅𝐶𝑚 ≥ 𝑊𝐴𝑡 > 𝐿𝑅𝐶𝑚,    𝑅𝑡 = 𝐷𝑡   &  𝐸𝑅𝑡 = 0                                   
else,        𝑅𝑡 = 0                                                                                           

                     (15) 

 

where 𝐷𝑡
𝑖 and 𝑅𝑡

𝑖  are respectively allocated demand and actual release during time t of the 

reservoir i; 𝑃𝑡 is hydropower generation at period t; 𝑃𝑚𝑖𝑛 and  𝑃𝑚𝑎𝑥 are minimum and maximum plant 

power capacities; 𝑚𝑎𝑥𝑍𝑡 is maximum reservoir water level at period t; 𝐿𝑅𝐶𝑚 and 𝑈𝑅𝐶𝑚 are upper 

and lower limits of rule curves in month m; 𝑆𝑡 and  𝑆𝑡+1 are respectively initial and final storage; 𝑄𝑡 

is inflow; η is overall efficiency factor; 𝑔 is acceleration of gravity; ρ is water density; 𝐻𝑡
̅̅ ̅ is hydraulic 

head of dam; 𝐸𝑉𝑡 is net evaporation in volume unit; 𝑊𝐴𝑡  water availability at the beginning of time 

(WAt = St + Qt); 𝐸𝑅𝑡 is excess release; a, b, c, d are the constant coefficients obtained from the 

storage – elevation curve for each reservoir given at the Pong (Eq. (16)) and Bhakra reservoirs (Eq. (17)): 

 

𝑍𝑡,𝑃𝑜𝑛𝑔 = (3−10 × 𝑆𝑡
3) + (5−6 × 𝑆𝑡

2) + (0.031 × 𝑆𝑡) + 349.14              (16) 

𝑍𝑡,𝐵ℎ𝑎𝑘𝑟𝑎 = (9−11 × 𝑆𝑡
3) + (2−6 × 𝑆𝑡

2) + (0.0263 × 𝑆𝑡) + 393.5               (17) 

 

 

3.5 Simulation of water resources 

For examining water allocation and demand in the study area, the WEAP model was applied. In 

addition, the optimised rule curves, which define the top of conservation storage zones and the top of 

buffer storage zones, were also considered in the WEAP to estimate water allocation in the basin.  
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Regarding the runoff volume calculation for the upstream mountainous area, the Rainfall-Runoff 

Soil Moisture (RRSM) method, which relies on empirical functions for describing evapotranspiration, 

surface and sub-surface runoffs, and deep percolation for a watershed unit, was used (Note: groundwater 

component was ignored in the simulation). This method considers two soil layers: the upper 

compartment that simulates surface runoff when forced with rainfall and evapotranspiration; and the lower 

soil layer where baseflow routing to the river and soil moisture changes are simulated (Yates et al., 2005).  

In terms of mass balance of glacial systems, by considering the accumulation of glacier to be 

uniform, the glacier volume was then calculated by multiplying the ice depth with the sub-basin area 

covering by snow and ice (Sieber and Purkey, 2011). The projected glacier area was obtained from a 

recent study by (Prasad et al., 2019) for measuring ice and snow melt at basin scale.  

For the downstream irrigated command area, the MABIA (MAitrise des Besoins d'Irrigation en 

Agriculture) method was employed for estimating irrigation demands (Sieber and Purkey, 2011). The 

MABIA determines the actual evapotranspiration (ETc) from the reference crop evapotranspiration 

(ET0) using “dual” 𝐾𝑐 method (see Eq. (18)), where Kcb is basal crop coefficient, Ke is evaporation 

from the soil surface. 

𝐸𝑇𝑐 = (𝐾𝑐𝑏 + 𝐾𝑒)𝐸𝑇0                                                          (18) 

 

4. RESULTS AND DISCUSSIONS 

4.1 Probability density distribution function for climate data 

Based on the skew coefficient (G), it is possible to determine the distributions of precipitation 

and temperature revealed by the multi-model ensemble (MME) dataset. The statistical weather 

parameter reveals that future monthly precipitation in the Himalayan region would dominate by 

symmetrical and asymmetrical distributions varying from month to month. It was found that the 

monthly precipitation has a symmetrical distribution for the months of Feb, Mar, Jun, Aug, Nov, and 

Dec, which represents a distribution with a shape similar to a normal distribution, while the months 

of Jan, Apr, May, Jul, Sep, and Oct with an asymmetrical appearance is more closely fitted to the log-

normal distribution. In case of annual time-scale, referring to Fig. 3, the precipitation distribution 

appears as a left-leaning curve, which is positive asymmetry or the so-called right-skewed distribution, 

for both the mid- and end-century periods. In comparison to the precipitation, the temperature is more 

symmetrically distributed, and it can accurately be described by a normal distribution. 

 

4.2 Climate projection for upstream of the basin 

As shown in Fig. 3, the projected mean annual precipitation indicates a rising pattern between 

15% to 20% across the GCMs, in which the highest occurrence indicated by the BNU-ESM model 

and lowest intensity represented by the GFDL-ESM2G model. The precipitation seems to be 

increased during the monsoon season, with the average rainfall of approximately 300 mm in July. In 

comparison to the baseline period, the average annual temperature shows the increase between 3.5oC 

and 5.0oC in the future across the GCMs, with the highest rise indicated by the GFDL-CM3 model 

projection by 7.0oC. Interestingly, the obtained finding corresponds to the recent studies conducted 

by (Krishnan et al., 2019, Rajbhandari et al., 2018), which concluded that the future annual temperature 

would reach up to 5oC in the Himalayan basin. 

The increase in temperature could probably reduce glacier volume in the Himalayan upstream as 

it was found that the mean annual glacier volume could reduce from approximately 1,403 BCM 

(baseline) to be 1,197 BCM in the mid-century (reduce by -14.5%) and 876 BCM in the end-century 

(reduce by -37.5%). In contrast, the glacier melting would increase the runoff volume that enters the 

Pong and Bhakra reservoirs. As a consequence, the mean annual runoff in the Beas River would 

increase to 10.00 BCM in comparison to the baseline (8.77 BCM), whereas the Sutlej River would 

also increase to 23.00 BCM compared to its baseline (21.71 BCM) across the GCMs projection.  
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Fig. 3 The mean monthly climate data, annual changes, and annual probability density function for (a) 

precipitation and (b) temperature at the upstream 

 

4.3 Climate projection for downstream of the basin 

The climate projections were averaged across the GCM models and presented for each state in 

the command area. Referring to the downscaled results, it was revealed that the downstream would 

experience a warmer future climate, in which the mean annual precipitation would increase between 

5% and 10% in the mid- and end-centuries in comparison to the baseline, with high intensity during 

the monsoon season. By considering both mid- and end-centuries (Fig. 4), the result suggests that 

future monthly precipitation will increase from its baseline, i.e. in Punjab from 180 mm to 200 mm, in 

Haryana from 130 mm to 150 mm, and in Rajasthan from 70 mm to 80 mm.  
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In addition, the maximum temperature will also increase from its baseline, i.e. in Rajasthan from 

23.89oC to 25.44oC, in Punjab from 22.84oC to 24.39oC, and in Haryana from 22.87oC to 24.53oC. The 

aforesaid finding expresses the potential severe impacts for the future water resources in Rajasthan State, 

which would affect the extensive agricultural plots due to lacking of rainfall and surface water 

availability. 

 

 
 

Fig. 4 Ensemble mean of monthly (a) rainfall (dotted lines are the baseline) and (b) maximum & minimum 

temperature in irrigated areas  

 
  

4.4 Projections for socio-economic and land use changes 

The projected population under SSP1 scenario for the Beas-Sutlej basin expresses a rapid growth 

in the mid-century between 35% and 45% but it would be decreased by the end-century between 10% 

and 20% compared to the baseline (year 2000). Based on the analysis, the population density was 

expected to expand significantly at the downstream. Obviously, the ratio between rural and urban 

population in Punjab, Haryana, and Rajasthan States was found to be changed remarkably from 66/34, 

71/29, and 77/23, respectively in 2001 to 63/37, 65/35, and 75/25, respectively in 2011 (CensusInfo, 

2011). It can be said that the rapid increase in population together with changes in migration 

consequences could potentially increase the demand for downstream domestic water consumption.  

Regarding future land use changes, there are several drivers used for land use projections. In details, 

the road network was found to be one of the main direct drivers since it provides the access to previous 

remote areas and also promotes anthropogenic disturbance near roadways. Secondly, the urban center 

was also the main contributor to urban population growth, which might lead to be more susceptible 

to land use change. Moreover, environmental gradients such as changing temperature and 

precipitation with altitude, was also found to be a good predictor to the area suitable for agriculture 

and vulnerable to conversion to agricultural land.   
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Lastly, the slope is also of paramount importance to determine the land useful for human 

development, for instance, agriculture and building require a fairly gentle slope. As a result, the V 

statistic test results indicated that elevation (0.375), population (0.260), slope (0.247) and distance to cities 

(0.199) are a very strong correlation with the land use change, while distance to rivers (0.134) and roads 

(0.089) showed moderate and weak correlations, respectively. Thereafter, these explanatory variables 

were modeled with the “static” role in model structure, which is a function of certain fixed 

(unchanging) driving factors for expressing aspects of basic suitability for the transition under 

consideration. The transition probability prediction revealed a good performance in the neural 

network, i.e. R2 index greater than 0.83 and the Kappa index of agreement of 98% when compared 

the projected to its observed land use map in 2010 (Fig. 5).  

 

 
 

Fig. 5 Detailed information about (a) land use types, (b) correlation between 2010 observed and projected 

areas, (c) 2010 observed land use map, and (d) 2010 projected land use map. 

 

It was found that the irrigated land would likely be decreased in the future and switched to urban areas. 

In details, Punjab and Haryana irrigated lands would decrease by 15% to 30% and 5% to 10%, respectively, 

compared to the baseline. Conversely, irrigated land in Rajasthan is expected to expand by about 12% 

to 18% in the future in comparison to the baseline period, as can clearly be seen from the historical data 

during 1995 to 2010 that the expansion of arable land was mainly at the expense of shrub vegetation. 

Importantly, the insights gained from this land use change study is somehow in consistent with the 

findings of (Naikoo et al., 2020) who revealed that the major change from agriculture to urban areas 

also occurred in New Delhi located at the downstream of Haryana and Punjab States, which 

experienced the decrease from 12% to 32% during the period of 1990 to 2018. Correspondingly, Meer 

and Mishra (2020) also found a similar trend in land use change during 1979 to 2018 in Northern 

India where the urban coverage expanded significantly over the region possibly due to increased 

population, while the agricultural areas decreased by 55%. 

 

4.5 Future projection for water resources system 

Prior to further WEAP model simulations for water demands and supplies and water storage and 

releases from the reservoirs, the calibration and validation processes were executed by comparing the 

monthly simulated and observed discharge and reservoir inflow at four available streamflow stations 

and two reservoir sites, respectively (see Fig. 1 for their locations).  
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Referring to Fig. 6, it is apparent that the simulated data is consistent with the observed values 

for the entire simulation periods. In addition to graphical technique, statistical indicators, i.e. 

Pearson’s correlation coefficient (r) (Pearson, 1895) and Nash-Sutcliffe Efficiency (NSE) (Nash and 

Sutcliffe, 1970) were also used to evaluate the WEAP model performance.  

 

 

 

 
 

Fig. 6 Monthly simulated and observed streamflow during calibration and validation  
at different monitoring stations. 

 

With respect to Table 2, based on Moriasi et al. (2007), the WEAP showed acceptable results 

with the values of r and NSE > 0.50 for both calibration and validation. Therefore, it can be said that 

the WEAP model is well calibrated and can be used to evaluate water allocation in the study area 

according to different scenarios. Thereafter, the WEAP model in association with the optimal rule 

curves for Pong and Bhakra reservoirs under joint operation, was applied for water allocation 

simulations. In this case, the reservoir management zone called conservation zone (the space between 

LRC and URC) was defined to freely release the water from the conservation pool to fully meet 

downstream requirements, in which when the reservoir storage level falls inside the buffer zone (the 

space between dead storage and LRC), the flow release rate is limited using a buffer coefficient (α) 

with the value between zero and one to limit the amount of water available for each month at critical 
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conditions in the reservoir. In this study, the value of α of 0.1 was defined for the Pong and Bhakra 

reservoirs, which indicates that the reservoir release will be reduced by 10% if the storage level falls 

into the buffer zone.  
Table 2.  

Calibration and validation results of WEAP model 

Station Process Period 

Fitness criterion 

r NSE 

Thalout   Calibration 1991 – 1998 0.89 0.74 

Validation 1999 – 2005 0.88 0.61 

Namgia  Calibration 1991 – 1998 0.76 0.56 

Validation 1999 – 2004 0.70 0.50 

Kasol  Calibration 1991 – 1999 0.89 0.77 

Validation 2000 – 2007 0.84 0.53 

Nadaun  Calibration 1991 – 1999 0.90 0.80 

 Validation 2000 – 2007 0.84 0.50 

Pong  Calibration 2000 – 2004 0.83 0.68 

Validation 2005 – 2007 0.81 0.55 

Bhakra  Calibration 2000 – 2004 0.87 0.77 

Validation 2005 – 2007 0.84 0.57 

 

 

Regarding the increase of future precipitation, glacier melt, and reduction in cultivated land, the 

mean annual runoff is expected to increase in the Sutlej River (in the range of 3.6% to 4.67%) and 

Beas River (by 4.73% to 7.82%) in comparison to the baseline. Referring to Fig. 7, the mean monthly 

runoff in the Beas and Sutlej Rivers is likely to increase from pre-monsoon to monsoon periods.  
 

 

 
Fig. 7 The projected streamflow for the (a) Sutlej and (b) Beas Rivers during the mid and end century periods 

 

(a) (b) 
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The runoff in the Sutlej River is much higher than in the Beas River, as stated by NAPCC (2011) 
that about 25% of the inflow from the Beas River was diverted to the Sutlej River through a Beas-

Sutlej Link. It was found that, at the end of the century, the flow in the Sutlej River will be slightly 

different than the mid-century. Furthermore, the glacier melting was also found to contribute to some 

portion of flow in the Sutlej and Beas Rivers by about 59% and 35% of the total runoff, respectively.  

Depending on the GCM models, the moderate reduction in irrigation water demand was found at 

Punjab State by the average of 10% and Haryana State by 5% (compared to the baseline). In contrast, 

the irrigation water demand in Rajasthan State was found to be increased by about 10% (compared to 

the baseline) (see Fig. 8 for more details). Interestingly, the abovementioned changes were found to 

be in line with the changes in land use, which corresponds to in the previous study conducted by (Dau 

et al., 2021b) using the GFLD-CM3 model under RCP 8.5 scenario and SSP 1 pathway. 

 

 
 

 

Fig. 8 The mean irrigation water demand in the cases of (a) annual requirements  

and (b) changes in the future across the GCM models 
 

Based on the obtained findings from this study, compared to the baseline, the relationship among 

projected precipitation, projected irrigated command areas, and projected irrigation water demand of 

each state under future climate and socio-economic conditions is illustrated in simplified Fig. 9 (Note: 
the figure is not drawn to scale). As seen in Fig. 9a, the states of Punjab, Haryana, and Rajasthan are 

likely to increase in precipitation, however, the irrigated areas in Punjab and Haryana are expected to 

decrease and is likely to increase in Rajasthan. In Fig. 9b, it can be noticed that due to the decrease 

of irrigated areas in Punjab and Haryana, and the increase in Rajasthan, the decrease in irrigation 

water demand is then clearly seen for both states and is potentially to increase in Rajasthan. 
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Fig. 9 The relationship between (a) the projected precipitation and the projected irrigated command areas  

and (b) the projected irrigation water demand and the irrigated command areas  

of each state under future climate and socio-economic conditions 

 

In line with the population growth under SSP1 scenario, the results expressed a slight shortage 

for domestic water consumption by 1% during the mid-century, which is meaningless in comparison 

to the whole system. Given the increase for future runoff as the consequences of rising in precipitation 

(5% to 10% at the downstream part) and the reduction on irrigation water demand as mentioned 

previously, efficient water managements such as couple human-natural system, water reuse, or 

demand-side management, etc. would possibly eliminate water shortage issue for domestic uses. As 

a conclusion, domestic water consumption will not a huge challenge in this study area.  
 

5. CONCLUSIONS 

The assessment of the effects of global climate and socio-economic changes on water resources 

system in the Sutlej-Beas was carried out. The results indicated that future annual precipitation and 

temperature will increase from baseline, in which high runoffs are likely to occur over the pre-

monsoon to monsoon seasons, as a consequence of glacier melting and heavy rainfall. Based on the 

land use projections, future irrigated areas in Punjab and Haryana is found to be decreased due to the 
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expansion of urban areas, whereas a slight increase is found in Rajasthan. The main findings also 

suggested that the annual irrigation water demand is expected to increase in Rajasthan State, while it 

will be decreased in Punjab and Haryana States, as a consequence of climate and land use changes.  

The study is certainly not without limitations, some of which are discussed below and will be the 

purpose of future work. The application of the Delta scaling approach for climate change was justified 

but it would be better to implement with other methods like the statistical and dynamical downscaling 
approaches. In addition, relying on only RCP 4.5 and SSP1 scenarios could probably be insufficient 

to represent all the important aspects of both climate and socio-economic changes. Therefore, applying 

different RCP and SSP scenarios would minimise the uncertainties in climate model projections.     

The outcomes of this study are expected to be beneficial for the Bhakra and Beas Management 

Board (BBMB) and other relevant agencies in managing the main infrastructures for irrigation water 

supply, hydropower production, and flood relief, situated in the Beas-Sutlej system. 
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