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ABSTRACT: 

Flooding problems have resulted in damage to urban and agricultural areas during the rainy season in 

the northeast of Thailand. Flood risk assessment at sub-catchment levels and proper explication of risk 

area can be guidelines for effective protection planning. This study aims to assess flood risk areas in 

the Yang catchment based on hydro-meteorological data between 2008-2016 by using the SWAT 

model for analyzing the maximum monthly discharge at each sub-catchment and fitted to the Gumbel 

distribution in order to evaluate flood risks in return periods of 2, 5, and 10 years. The results indicated 

that the calibrated the SWAT model can reasonably simulate discharge at the observed stations based 

on the statistical indicators such as R2, RE, and Ens. According to the Gumbel distribution methods, the 

western sub-catchments of the Yang catchment had a high level of flood risks. However, the other in 

the east sub-catchments were found to have lower levels of flood risks. The methods and results of this 

study can be useful tools and information for improving an understanding among stakeholders in the 

affected area in order to reduce damage from flooding in the future. 
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1. INTRODUCTION 

Discharge is the key factor that strongly causes the flood and it is mainly affected by climate and 

land use changes (Chung et al., 2018). In case that the discharge is much higher than the catchment 

capacity of rivers or reservoirs and the flow becomes uncontrollable, the excessive volume of the 

discharge may somehow cause the flood in which the damage levels depends on types of the area, 

and time period when the flood exists. The fact is that the discharge can be directly estimated at the 

observed stations that have been situated at many rivers through the past 10 years since the flood 

could cause a great loss of human’s life and properties (Asgharpour & Ajdari, 2011). In order to lessen 

and prevent the loss as well as to efficiently manage the limited natural resources in the future, the 

flood frequency and flood-risk areas have been analyzed and detected using several data indexes 

(Bhagat, 2017) as a tool to directly and indirectly define the conditions of the flood.  

Over the last decade, mathematical models have been broadly used to assess the hydrologic 

processes existing around a catchment for the discharge studies and simulation for medium and small 

catchments (Haidu & Ivan, 2016; Haidu et al., 2017; Strapazan & Petruţ, 2017). Particularly, SWAT 

(Soil and Water Assessment Tool) is a semi-distributed model interfaced with ArcGIS that has been 

popularly implemented since it is able to simulate physical characters of a catchment with a 

distributed-parameter system following the actual data from the target area and effective calculation 

procedure (Begou et al., 2016). The model is also able to simulate a site for the discharge assessment 

from the hydrological data and the data from the observed station and it gives the outcome that is very 

similar to the actual data.  
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Actually, the discharge data is very necessary for a catchment since it is not only the standard to 

show the capacity of the catchment for water resource management, but it can be linked to define the 

flood risk index by analyzing the annually maximum flow rate with a Gumbel frequency distribution 

method (Győri et al., 2016; Bhagat, 2017). The result from this analysis method can define the severity 

levels and predict the time period when the flood is coming. This can definitely be one of the methods 

to decrease the loss after the flood.  

In this case, Yang Catchment in the northeast of Thailand, a lot of people have mad use this river 

especially for agricultural purposes. Unfortunately, the flood has been regularly found around the 

Yang Catchment through many decades and it has a severe impact on the life quality of the local 

people in the area. The problem previously mentioned seems to be a negative consequence of the land 

use and climate changes so that the accurate estimation of the discharge as the source of the flood 

during the raining season (Ivan et al., 2018) as well as a quick data distribution to reach out all 

stakeholders will surely facilitate effective water resource management and prevent any problems that 

might come after the flood in the area. This study hence aims to investigate the maximum discharge 

with strong impact on the flood using the SWAT model together with a Gumbel frequency distribution 

method in order to predict and estimate the possibility rate of the flood in the regional river 

catchments. The result would be presented as spatial map in GIS and it would be able to decrease the 

impact of the flood on the local agriculture as well as a tool for either water management or lessen 

any problems coming after the flood in the future.  

2. STUDY AREA 

Yang Catchment is located at the eastern part of Chi Catchment and most of the area is flat and 

undulating covering 4,145 km2. Based on a 10-year climate data from the Thai Meteorological 

Department (during 2008-2016), the monthly average temperature can be 22.7-29.7 °C. The rainy 

season typically starts from May to October and the average rainfall is about 1,200 mm per year. 

There are 2 discharge observed stations found in the area including the E54 and E92 as presented in 

Fig. 1(a). Most of the discharge will be found from June to May and the average annual discharge is 

1,336 million cubic meter (MCM).  

 
(a) Study area (b) Soil types map (c) Soil types map 

 

Fig. 1. Study area and spatial data map. 
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3. METHODOLOGY 

3.1. Sub-catchment area and discharge simulations 

3.1.1. SWAT model and data collection 

The SWAT model (Arnold et al., 1998) is a semi-distributed hydrologic model purposively 

developed to estimate the hydrological conditions, the discharge form past to present, and predict any 

situations in the future (Maghsood et al, 2019). The feature of this model is that it can simulate 

watershed delineation to separate the whole area into sub-catchments (Pereiraa et al., 2016) and create 

the river route based on the user’s need from digital elevation model (DEM) of each sub-catchment 

created by the model. This allows the user to know the discharge in each sub-catchment which is a 

great benefit for the spatial data analysis on the discharge from the regional catchments. In term of 

data calculation, the SWAT model principally considers any hydrological processes using a water 

balance equation as illustrated in Eq. (1) (Sajikumar & Remya, 2018). 

 

     t
i qwseepasurfdayt QWEQRSWSW 10  (1) 

where, SWt was final soil water content (mm), SW0 was initial soil water content (mm), t was time (day), 

Rday was rainfall on day i (mm), Qsurf was surface water content on day i (mm), Ea was evapotranspiration rate 

on day i (mm), Wseep was groundwater water content on day i (mm), and Qgw was groundwater return to discharge 

on day i (mm). 

The model requires the input data in order to create Hydrologic Response Units (HRUs) (Ning et 

al., 2015) and different parameters for the discharge calculation e.g. digital elevation model (DEM), 

climate and daily rainfall data (from 9 Stations as illustrated in Fig. 1(a)), different spatial data, and 

the discharge data from the observed stations for data calibration on the model’s outcome as presented 

in Table 1. Samples of important spatial data were soil types and the land use as presented in Fig. 

1(b) and Fig. 1(c) that the most of soil types consist of 2 types which are Soil-17 (sandy loam to 

sandy clay loam) and Soil-18 (similar like Soil-17 but increased by increasing in depth). The land 

contains low to moderate fertility. Regarding the land use, Yang Catchment is mostly used for 

agriculture or 75% of the area and a regular plant is rice. Meanwhile, 12% of the area is the forest 

zone and another 3.5% is the local community zone. 

 Table 1.  
Spatial data for input to the SWAT model and for evaluate model accuracy. 

 

Data types Periods Scale Source 

Digital Elevation Model (DEM) 2015 30x30 m 

Land Development 

Department 

Catchment boundary and river map 2015 1:50,000 

Soil type map 2015 1:50,000 

Land use map 2015 30x30 m 

climate data  2008-2016 Daily Thai Meteorology 

Department Rainfall data (9 Stations) 2008-2016 Daily 

Discharge data from 2 observed stations 

(E54 and E92)  
2008-2016 Daily 

Royal Irrigation 

Department 

3.1.2. Model calibration and validation 

The model calibration and validation were performed to assess the effectiveness of the outcome 

derived from the SWAT model (Kumar et al., 2017) to confirm its accuracy compared with the field 

data (Lin et al., 2015). These methods were done by comparing the discharge from 2 observed stations 

– E54 and E92 with the calculated result from the SWAT model specifically for the monthly scale. 
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The calibration period was from 2008 to 2013 (6 years) and the validation period was from 2014 to 

2018 (3 years). During this step, the model needed to adjust the hydrological sensitivity parameters 

(Fukunaga et al., 2015) that might have some impact on the discharge and 7 parameters were 

mentioned in this study including SOL_AWC, ESCO, ALPHA_BF, SLSUBBSN, GW_DELAY, 

SURLAG, and CH_N2. Additionally, 3 types of indexes were used for the model assessment 

consisting of Coefficient of Determination (R2), Relative Error (RE), and Nash-Suttclife efficiency 

(Ens) as illustrated in Eq. (2)-(4), respectively. 
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where i was the data order, n was number of total data, Qoi was the observed data at time i, Q̅ was the average 

of all observed data, Qsi was the data from model at time i, and Q̅s was the average from the model. 

 

3.2. Gumbel frequency distribution method 

Gumbel frequency distribution is a method that can be applied to find the extreme value 

distribution function (Pinherio & Ferari, 2016; Parhi, 2018) in a variety of both hydrological and 

meteorological works such as the maximum flood or rainfall prediction (Olumide et al., 2013; 

Ganamala & Kumar, 2017, ), etc. This technique is exactly applicable for the area with a short-term 

maximum discharge (Bhagat, 2017) and, this technique was used in Thailand to statistically study the 

flood risk at Yang Catchment under the climate changes in the future (Shrestha & Lohpaisankrit, 

2017). The equation to analyze the maximum flood in different return periods was depicted in Eq. 

(5). 

 

 KQQT   (5) 

 

where QT was maximum discharge in return period time T, Q̅ was average maximum discharge, K was 

frequency factor (see Eq. (6)), and  was standard deviation (see Eq. (7)). 
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where YT was reduced variable as seen in Eq. (8), and Sn was reduced mean and reduced standard deviation 

respectively depending on the data number of year N, and Q was annual maximum discharge. 
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3.3. Study procedure and flood risk area mapping 

The procedure of the flood frequency analysis and flood-risk area mapping at Yang Catchment 

was illustrated in Fig. 3 and the overview of all details were discussed in the sub-section 3.3.1-3.3.4. 

3.3.1. Separating the sub-catchments: The sub-catchments were separated during the step of 

watershed delineation of the SWAT model (Swain et al., 2018) in which each sub-catchment could 

present the maximum discharge at the desired period and it chose to present the monthly data (the 

model already passed the calibration and validation method) so the result would be consistent with 

the discharge verification and calibration between the SWAT model and the observed stations. 

3.3.2. Creating a relationship between the discharge and return period: The maximum discharges 

from each sub-catchment during 2008-2016 (9 years) was used to create a relationship between the 

flow rate and return period using a Gumbel frequency distribution method (Subyani, 2011). This 

method was resulted as an equation for the maximum discharge predication at different return periods 

(2, 5, and 10 years respectively). 

3.3.3. Calculating the flood frequency: The maximum discharge derived in the previous sub-section 

was processed to find the mean score of each sub-catchment as the standard value to define the 

severity levels of the flood and then the differences between the maximum discharge and the average 

maximum discharge of every return period were calculated. 

3.3.3. Creating the flood-risk area map: The discharge derived from the equations at each different 

return period from each sub-catchment was converted to a shape file and prepared to put into ArcGIS 

Model in which the severity levels of the flood were based on the maximum discharge classified into 

different ranges (100 MCM) and each period was differentiated by the color intensity of each different 

sub-catchment made by the SWAT model. The result was presented as the spatial map. 

 
Fig. 3. Study procedure diagram. 
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4. RESULT AND DISCUSSIONS 

4.1. Discharge analysis by SWAT 

The watershed delineation of Yang Catchment was resulted as 15 sub-catchments as presented 

in Fig. 4(a) and each of these sub-catchments was analyzed to define and present the discharge of 

itself. Table 2 presents the sensitivity parameters after adjusting to make the discharge from E54 and 

E92 Stations match one another the most. After comparing the discharge derived from the SWAT 

model with the data from Station E54 during 2008-2016 (9 years), the model demonstrated the annual 

average of 495.3 MCM which was higher than the result form the observed station where it was 446.1 

MCM (RE average = 9.9%). At meantime, when compared with Station E92, the SWAT model 

showed the annual average of 984.3 MCM that was higher than the result from the observed station 

where it was 833.3 MCM (RE average = 15.3%). In case of using R2, the results from both E54 and 

E92 Stations were 0.86 and 0.91 (on average) respectively. This was similar to Ens where the results 

from both stations were 0.85 and 0.90 (on average) respectively. However, these results were still at 

a good rate of accuracy. The goodness of fit of a whole 9 years from E54 and E92 were also illustrated 

in Fig. 4(b)-(c). 

 
              (a)  

 
(b) 

 
(c) 

Fig. 4. SWAT simulation results, (a) 15 Sub-catchment in Yang Catchment,  

and discharge comparison between observed and simulation at (b) E54 and (c) E92.  

Fig. 5 presents the monthly discharge of all 15 sub-catchments classified by the SWAT model 

after passing the verification method. The calculation results indicate the consistency with baseline 

year discharge from both observed stations. In the year 2008-2010, the value is close to the normal 

average and in 2011 has increased due to the period of high rainfall. The maximum discharge value 

will occur in the sub-catchment No.15, which is also the outlet point of the Yang Catchment, (the 

maximum discharge value was 642 MCM, occurring in 2011). In contrast, the result from 2012-2016 

was lower than the average since the rainfall was decreased. After all, the monthly maximum 

discharges in each year were used to create the equations for Gumbel frequency distribution and flood 
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frequency chart that was finally derived as the maximum flow rate equation to find the maximum 

flow rate of each return period. 

 

Table 2.  

SWAT final adjusted sensitivity parameters. 

No. Parameter Description Range Before Final 

1 SOL_AWC Available water capacity 0 - 1 0.14 0.4 

2 ESCO Soil evaporation 0 - 1 0.95 0.85 

3 ALPHA_BF Base flow alpha factor 0 - 1 0.048 0.0001 

4 SLSUBBSN Average slope length 10 - 150 15.42 12.00 

5 GW_DELAY Groundwater delay time 0 - 500 31 30 

6 SURLAG Surface runoff lag coefficient 0.05 - 24 2 1.27 

7 CH_N2 
Manning's "n" value for the main 

channel 
0 - 0.30 0.014 0.013 

 

Fig. 5. Monthly discharge of 15 Sub-catchments.  

4.2 Maximum discharge by return period 

The Gumbel frequency distribution was conducted by finding a relationship between the 

maximum discharge from each of 15 sub-catchments through a whole 9 years derived from the SWAT 

model and the results were arranged in a descending order (‘y’ axis) and the return periods in a 

logarithmic scale chart (‘x’ axis). It was finally derived as the equation for the maximum discharge 

by each return period of all 15 sub-catchments. Particularly, this study considered the return period 

of 2 years, 5 years, and 10 years respectively (since the data was taken from 9 baseline years for the 

prediction equation, the return period should not be more than 10 years for accurate result). After all, 

the maximum discharges of all sub-catchments were presented in Table 3. 

According to the maximum discharge of 15 sub-catchments derived from the equation in Table 

3, the maximum discharges were increased following the return period of 2 years, 5 years, and 10 

years respectively. Sub-catchment 15 was the one with the highest maximum discharge where the 

maximum discharges were 216.9, 428.6, and 588.7 MCM sequentially. This was followed by Sub-

catchment 13, 7, and 9 where the maximum discharges were decreased one by one. At meantime, 

Sub-catchment 10, 12, 11, and 14 demonstrated the least discharges ranged from 0.2 MCM (for the 

2-year return period) to 49.1 MCM (the 10-year return period) sequentially. Significantly, by 

comparing the 9-year average maximum discharge of all sub-catchment from the SWAT model (as 
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presented in a column ‘Baseline’ in Table 3), it was indicated that the results of the 5-year and 10-

year return periods were higher than the result from the SWAT model whereas the result from the 2-

year return period was slightly lower than the SWAT model’s result. 

Table 3.  

Maximum discharge by the sub-catchment equation in return periods. 

Sub-

catchment 

No. 

Equations for calculate 

the maximum discharge 
R2 

Maximum discharge  

by each return period (MCM) 

Baseline 2 year 5 year 10 year 

1 y = 40.853ln(x) + 28.336 0.872 64.3 56.7 94.1 122.4 

2 y = 66.17ln(x) + 2.9875 0.934 61.2 48.9 109.5 155.3 

3 y = 105.61ln(x) + 44.043 0.967 137.0 117.2 214 287.2 

4 y = 19.04ln(x) + 4.2243 0.947 21.0 17.4 34.9 48.1 

5 y = 121.14ln(x) + 53.064 0.958 159.7 137 248 332 

6 y = 20.739ln(x) + 4.9219 0.953 23.2 19.3 38.3 52.7 

7 y = 183.03ln(x) + 61.088 0.959 222.2 188 355.7 482.5 

8 y = 3.9451ln(x)  2.1379 0.617 1.3 0.6 4.21 6.95 

9 y = 183.27ln(x) + 57.563 0.954 218.9 184.6 352.5 479.6 

10 y = 1.2196ln(x)  0.6635 0.608 0.4 0.2 1.3 2.1 

11 y = 16.173ln(x)  8.8479 0.563 5.4 2.4 17.2 28.4 

12 y = 8.8445ln(x)  4.8101 0.566 3.0 1.3 9.4 15.6 

13 y = 199.85ln(x) + 60.247 0.932 236.1 198.8 381.9 520.4 

14 y = 27.951ln(x)  15.293 0.564 9.3 4.1 29.7 49.1 

15 y = 230.99ln(x) + 56.812 0.942 260.1 216.9 428.6 588.7 

4.3 Flood-risk area map at Yang Catchment 

Fig. 6 presents the map of the flood-risk area in each sub-catchment derived from the spatial data 

and classified by ArcGIS model. Fig. 6(a) shows the maximum discharge through a whole 9 baseline 

years (2008-2016) from the SWAT model while Fig. 6(b)-(c) illustrates the results from the return 

period of 2, 5, and 10 years. All results were discussed as follows. 

4.3.1 2-Year return period: After comparing the regular maximum discharge (9 years) as seen in Fig. 

6(b), it was found that Sub-catchment 1, 2, 4, 6, 8, 10, 11, 12, and 14 similarly demonstrated the 

results in a range from 0-100 MCM which as the same as the regular average. The results from Sub-

catchment 3, 5, 7, 9, and 13 were in a range from 101-200 MCM and there were 3 sub-catchments 

showing lower results than the regular average including Sub-catchment 7, 9, and 13 (regular average 

was ranged from 201-300 MCM. However, Sub-catchment 15 presented the highest maximum 

discharge for the 2-year return period that was 216.9 MCM and this was very close to the regular 

average of 260.1 MCM (16.6% of data difference). Consequently, it was expected that Sub-catchment 

15 was most possible to encounter the flood compared to other sub-catchments.  

4.3.2 5-year return period: In case of the 5-year return period (see Fig. 6(c)), the flood-risk area was 

expanding from the 2-year return period or from 1 to 7 sub-catchments where the maximum 

discharges became higher than the regular average including Sub-catchment 2 showing in a range 

from 101-200 MCM (regular average was from 0-100 MCM), Sub-catchment 3 and 5 showing in a 

rage of 201-300 MCM (Regular average was from 101-200 MCM), and Sub-catchment 7, 9, and 13 

showing in a range of 301-400 MCM (Regular average was from 201 -300 MCM). In addition, Sub-

catchment 15 still showed the highest maximum discharge of 428.6 MCM which was 64.8% different 

from the regular average. Nevertheless, during this return period, there were 8 sub-catchments 
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showing the results equal to the regular average (from 0-100 MCM) including 1, 4, 6, 8, 10, 11, 12, 

and 14 sequentially.      

4.3.3 10-year return period: Based on the flood-risk distribution map during the 10-year return period 

(see Fig. 6(d)), the most flood-risk area has been expanded to 8 sub-catchments while the maximum 

discharge was also highly increased 19-52% compared to the regular average. This notably indicated 

that there were 4 sub-catchments where the maximum discharges had been increased including Sub-

catchment 7 and 9, (increased from 301-400 to 401-500 MCM and Sub-catchment 13 and 18 where 

it became higher than 500 MCM). During this 10-year return period, there still were 7 sub-catchments 

showing the results equal to the regular average (from 0-100 MCM) including 4, 6, 8, 10, 11, 12, and 

14 respectively.  

 

Fig. 6 Maximum discharge in sub-catchment area simulated from Gumbel distribution by each return period 

compare with the baseline year, (a) Average 9 baseline year, (b) 2-year return period, (c) 5-year return period, 

and (d) 10-year return period.    

5. CONCLUSIONS 

In this study, the flood estimation from the maximum discharge at Yang Catchment uses the 

SWAT model to classy the area into different sub-catchments and estimate the monthly maximum 

discharge in each year as well as using a Gumbel frequency distribution method to create the flood-

frequency equations by the return period of 2 years, 5 years, and 10 years. Then, all of the results 

were presented as the flood-risk spatial map created by ArcGIS model and it was concluded that the 

SWAT model was able to classify the target area into 15 sub-catchments by the physical 

characteristics at each level of land contour. Moreover, it was found that when comparing the 

discharge estimation during 2008-2016 using the SWAT model with the data from 2 observed stations 

– E54 and E92, the result was satisfactory that could be affirmed by R2, RE, and Ens that also allows 

the user to know the maximum discharge in each sub-catchment from the model. 

Creating the flood frequency equation was a process of making the frequency distribution from 

the monthly maximum discharge in each sub-catchment derived from the SWAT model following 
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Gumbel’s theory. For the results, it was found in the 2-year return period that the maximum discharge 

was similar to the average maximum discharge (9 years) and it was increasing by years of the return 

period. Notably in the 10-year return period, the maximum discharge was 19-52% higher than the 

regular average. Additionally, for flood-risk area simulation in Yang Catchment, the maximum 

discharge in each return period were presented as the spatial map crated by ArcGIS model that was 

able to classify the extents and differences of the flood severity and possibility with different shades 

of colors for different return periods and maximum discharge derived from the equations in each sub-

catchment. After considering the flood-risk area from the map, most of the sub-catchments in the 

southwest (Sub-catchment 7, 9, 13, and 15) has higher possibility of flooding since the maximum 

discharges there are much higher than the regular average. Furthermore, the physical characteristics 

there were the lowland with many rivers crossing through, especially Sub-catchment 15 where it is 

the final outlet to Yang Catchment. On the contrary, the eastern zone has low possibility of flooding 

since the maximum discharge was similar to the regular average and most of the land is higher than 

the western zone. 

This study is likely a tryout on both hydrological and metrological data that had been completely 

collected from the target area during 2008-2016 (totally 9 years) where it was used as an initial data. 

For the accurate result of data analysis, the data prediction in this study was not over 10 years. 

Hopefully, it was expected that complete data recorded in a longer term (20 – 30 years and more) 

would provide the equation for maximum discharge estimation with more accurate results from more 

return periods e.g. 20 years, 50 years, or 100 years (It would probably provide more of the flood 

frequency map by the increasing return periods). Moreover, the future discharge estimation from 

different types of climate simulators together with a hydrological model could be another approach 

to predict the maximum discharge and create the flood-risk area map in the future. Above all, the 

researcher team hopefully expects that the research methodology and outcomes from this study would 

provide the useful data and be another channel to facilitate all stakeholders and any organizations 

within any river catchment areas to understand better about the hydrological processes in order to 

decrease the loss from the flood as well as be able to manage the sustainable water resources in the 

future. 
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