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 ABSTRACT: 

Oil palm is a vital force in driving the energy business. In 2020, Thailand had 9,954.27 sq.km. (around 

6,220,799 Rai) of oil palm plantations, ranking third in the world after Indonesia and Malaysia. Ranong 

has the highest oil palm crop yield per Rai in Thailand. Notwithstanding, it is challenging to classify 

land use accurately and keep it up to date by using only labor, due to the need for a number of laborers 

and high labor costs. Moreover, land use/land cover cannot use spectral information classification 

alone. Nevertheless, machine learning is a popular data estimation technique that enables a system to 

learn from sample data; however, there are few studies on its use for data fusion techniques in order to 

classify land use/land cover, especially concerning oil palm. Therefore, we aim to apply machine 

learning and data fusion to classify land use/land cover, especially for oil palm. After a 

multicollinearity test of spectral information and ancillary variables, Surface Reflectance (SR) of Blue, 

Near Infrared, SWIR-1, NDWI, NDVI and LST were selected with a threshold of correlation 

coefficients. A stepwise stack of six inputs was created. The first stack included only Surface 

Reflectance (SR) of Blue, Near Infrared and SWIR-1. NDWI, NDVI and LST were added later. ID4 

(Surface Reflectance (SR) of Blue, Near Infrared, SWIR-1, NDWI, NDVI and LST) in the random 

forest model resulted in OA being 0.9341 and KC being 0.9239, which was the highest among 12 

models. ID4 in the random forest model provided the classification results for oil palm very close to 

the factual number per the figure of 2.90 sq.km (around 1,814 Rai) from the Department of Land. 

Key-words: Oil palm, Ranong, Data fusion, Machine learning, Remote Sensing 

1. INTRODUCTION 

All industries inevitably need energy to drive their industries. Oil palm is a crucial factor in 

driving the energy business. From the 1970s to the 2020s, oil palm area has dramatically doubled, 

and such an increase in oil palm plantations affects the ecosystem. At present, alternative energy has 

been used to replace fossil fuels, which includes non-renewable petroleum, natural gas and coal as 

the main sources of electricity and energy used in daily life. Biomass, or biological energy, obtained 

from palm oil is an alternative as a renewable energy source; for instance, biodiesel renewable energy 

can replace fuel for future transportation and can also be used as a raw material in soap and foods 

such as condensed milk, ice cream and butter. This is in line with 17 sustainable development goals 

as presented by the United Nations (Shaharum N. S., et al., 2020). 

In 2020, Thailand had 9,954.27 sq.km. (6,220,799 Rai) of oil palm plantations, which ranked 

third in the world after Indonesia and Malaysia. The southern region of Thailand has 8,511.36 sq.km. 

(5,319,602 Rai) of oil palm plantations, and has a total area of 8,077.63 sq.km. (5,048,519 Rai) that 

can currently produce actual production volume. The province with the largest growing area in the 

southern region is Krabi, with a total area of 1,873.30 sq.km. (1,170,815 Rai) of oil palm plantation, 

but the province with the highest crop yield per Rai is Ranong, serving 2,980 kilograms per 1,600 

sq.m. (Land Development Department, 2021). Accurate and up-to-date data is important for land 

management. Notwithstanding, it is quite difficult to classify land use accurately and up-to-date using 

labor, due to the need of the number of laborers and high labor costs. Using satellite images to classify 
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land use can well solve the problems of the number of laborers and high labor costs. Until the present, 

satellite images have been used to classify land use in numerous cases (George, Padalia & Kushwaha, 

2014).  

At present, satellite imagery is applied in the classification of many field crops. The use of 

satellite images to pinpoint old palm areas is widely popular (Srestasathiern & Rakwatin, 2014; Li, 

Dong , Fu, & Yu, 2019). To illustrate, Thenkabail used satellite images at 4-meter resolution captured 

from an IKONOS satellite to study oil palm biomass (Thenkabail, et al., 2004). Gutiérrez used satellite 

images at 250-meter resolution from MODIS to study oil palm area spanning 939,204 square 

kilometres (Gutiérrez-Vélez & DeFries, 2013). J. Miettinen studied oil palm plantations across 

Southeast Asia and Peninsular Malaysia, Sumatra, Java, Borneo, Sulawesi and Mindanao islands 

(Miettinen, Shi, Tan, & Liew, 2012). This study classifies land use by separating data into 13 layers, 

including mangrove forests, forests, rain forests and oil palm. By using high-resolution data, it can 

also help classify oil palm areas. In 2011, Shafri used the maximum likelihood classifier to classify 

Ganoderma disease infected oil palms with an accuracy of 82 percent (Shafri, Hamdan, & Saripan, 

2011). Moreover, Kulpanich et al. used the UAV images to collect relevant data to forecast oil palm 

yields (Kulpanich, et al., 2022). However, the limitation of UAV images is that the large area will 

take a lot of time and budget for the operation. From the above statement, it was found that moderate-

resolution satellites (MODIS) can classify oil palms, so it is believed that LANDSAT9, with a higher 

spatial resolution than MODIS, will also be able to classify oil palms.  

Regarding the classification algorithm, Morel successfully differentiated forest from oil palm 

using k-means and an MLC algorithm (Morel, Fisher, & Malhi, 2012). In addition, Cheng 

successfully classified land cover using LANDSAT and ALOS-PALSAR through SVM and 

Minimum Distance algorithms (Cheng, Yu, Cracknell, & Gong, 2016). The study found that, for the 

classification of two areas, SVM was better than Minimum Distance algorithms that give satellite 

images from LANDSAT and ALOS-PALSAR. Furthermore, Cheng’s study covered the areas of 

Malaysia, Indonesia, Thailand and Nigeria, with an accuracy of over 94 percent for those 

aforementioned countries (Cheng, et al., 2018). But it found little application using machine learning 

in classifying oil palms by satellite imagery. 

Nowadays, machine learning in classification has been widely adopted (Worachairungreung, et 

al., 2021; Worachairungreung, Thanakunwutthirot, & Ninsawat, 2019) Machine learning is mostly 

applied on oil palm classification for interpretation. Nooni used Support Vector Machine learning 

models to classify oil palm areas (Nooni, et al., 2014). Sitthi used Naive Bayes classifiers to identify 

what is covered in given areas, (Sitthi, et al., 2016) and Mubin used a convolutional neural network 

as a deep learning method to identify young and mature oil palm trees) Mubin, et al., 2019(. 

Nevertheless, it is rare to find classification research comparing multiple algorithms given two types 

of satellite images or more.  

The classification of LULC is complex. Currently, data fusion techniques are used to help classify 

many LULCs. Data Fusion is a method or tool to combine remote sensing data from different sources 

and multiply them to create new data in order to obtain representative data. Some researchers use a 

Digital Elevation Model (DEM) and SAR derived features that contribute the most to building damage 

classification. Classification results showed an overall accuracy of >90% and an average of >67% 

(Adriano, et al., 2019). Some researchers used a data fusion method and NDVI time-series analysis-

based phenology extraction. The Spatial and Temporal Adaptive Reflectance Fusion Model 

(STARFM) technique accurately blended SPOT5 and MODIS NDVI in Shandong Province, China, 

where counties tested phenology detecting methods with data fusion techniques (Yin, et  al. 2019). Some 

researchers have used mono-temporal and multi-temporal LULC classifications and auxiliary data to 

determine LULCC in southwest Burkina Faso's varied landscape. Multi-temporal classification 

outperformed mono-temporal classification in the research area (Zoungrana , et al., 2015). According 

to the study, data fusion improves classification outcomes. Therefore, this study wanted to use such a 

technique to classify oil palm. Oil palm is an economically important plant in southern Thailand, but 

data fusion and machine learning are rarely used to classify oil palms, so in this study, Landsat 9 

satellite imagery with 30 meter spatial resolution was used to classify it. In addition, data fusion and 
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machine learning algorithms such as SVM, Random Forest and CART were used to classify palm, 

but this study studied only the Ranong dataset. Finally, it is hoped that this study will help classify oil 

palm in Thailand, as well as other countries in the region. 

2. STUDY AREA  

Ranong Province is in the southern region of Thailand, with an area of 3,426 sq.km. (2,141,250 

Rai). The province is comprised of five districts: Mueang District, La-un-District, Kapoe District, Kra 

Buri District, and Suk Samran District, with an elevation range between 0-1,388 meters above sea 

level. Ranong Province is located in the southwest part of Thailand, and entirely influenced by the 

southwest monsoon. It receives more abundant rainfall than other provinces and it falls most of the 

year. Most areas of the province are covered by rubber, orchard, forest, mangrove and oil palm. (Fig. 

1).  

 
Fig. 1. Ranong Province. 



164 

 

3. DATA AND METHODS 

In this study, satellite imagery and data were used. We then take satellite imagery analyzing the 

land surface, temperature, soil index, water index and vegetation index, and run the analysis results 

through data fusion. We then use a multicollinearity method to reduce data redundancy. We apply 

machine learning algorithms by dividing the training and testing datasets into 80:20 proportions. 

Finally, we compare the results. Figure 2 shows the overall methodology mentioned above. 

 
Fig. 2. Overall Methodology 

3.1. Landsat 9 Spectral Reflectance Data 

In this study, Landsat 9 was selected because the Landsat program continues its mission to 

capture repetitive observations worldwide for monitoring, comprehending and managing Earth’s 

natural resources, with Landsat 9 under collaboration between the U.S. Geological Survey (USGS) 

and the National Aeronautics and Space Administration (NASA). Researchers rely on the USGS's 

Landsat archival data, which has been freely available since 1972, to map changes to the land’s 

surface, but it is required to be pre-processed to make it usable. The researchers chose and altered 

remotely sensed products using an on-demand interface provided by the USGS Earth Resources 

Observation and Science (EROS) Center. Table 1 shows the Landsat 9 details. 

Table 1. 

Landsat 9 Spectral Reflectance Data 

 
Spectral Wavelength in micrometers Resolution in meters 

Operational Land Imager 

Band 1—Ultra blue (coastal/aerosol) 0.435–0.451 30 

Band 2—Blue 0.452–0.512 30 

Band 3—Green 0.533–0.590 30 

Band 4—Red 0.636–0.673 30 

Band 5—Near infrared (NIR) 0.851–0.879 30 

Band 6—Shortwave infrared (SWIR) 1 1.566–1.651 30 

Band 7—Shortwave infrared (SWIR) 2 2.107–2.294 30 

Band 8—Panchromatic 0.503–0.676 15 

Band 9—Cirrus 1.363–1.384 30 

Thermal Infrared Sensor 

Band 10—Thermal infrared (TIR) 1  10.60–11.19 100 

Band 11—Thermal infrared (TIR) 2 11.50–12.51 100 
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The Landsat 9 dataset contains surface reflectance from an Operational Land Imager, top of 

atmospheric (TOA) reflectance, and TOA brightness for temperature in Kelvin, as well as spectral 

indices, including a Normalized Difference Vegetation Index (NDVI), Soil Adjusted Vegetation 

Index (SAVI), and Normalized Difference Moisture Index (NDMI). 

The Landsat 9 scene of path 130 and row 53 was projected using UTM with datum WGS84, and 

was acquired during a field survey (January 2022). This study adopted SR Bands TOA brightness 

temperature, Normalized Difference Vegetation, Normalized Difference Vegetation Index, 

Normalized Difference Water Index, and Soil Index at 30-meter resolution. The researchers only 

considered the optical bands (2 to 7) for classification among all SR bands. The TOA brightness 

temperature (only band 10) was utilized to estimate land surface temperature. 

3.2. Field Data  

Table 2 and figure 3 show field data. Field data from 1,600 field data points was obtained from 

the Global Positioning System (GPS). The field data consisted of rubber, oil palm, orchard, forest 1, 

forest 2, mangrove, built-up area, and water bodies. The data were divided into 2 sets: set 1 was for 

modeling, and set 2 was for testing accuracy of the model under the proportion of 80:20, respectively. 

 
                                           Table 2. 

Field Data 

Land Cover Class  NO. Field Data  

Bare Soil 36 

Rubber 51 

Orchard 92 

Forest 160 

Evergreen Forest 390 

Mangrove 245 

Oil Palm 420 

Built up Area 104 

Water Bodies 104 

3.3. Auxiliary Variables  

In this study, Landsat 9 consisted of SR bands 2-7 and auxiliary data of NDVI, SI and NDWI, 

including Land Surface Temperature estimation. The purpose of using such auxiliary variables was 

to improve classification accuracy. 

3.3.1. Land Surface Temperature 

There are many ways to calculate Land Surface Temperature (LST). Previous research 

comparing different LST estimation methods favored the Radiative Transfer Equation (RTE)-based 

technique and band 10 over band 11. (Zhou, et al., 2012; Jiménez-Muñoz, et al., 2014; Santos, et al., 

2018; Rehman, et al., 2021). In this study, we used Landsat 9 TIRS Band 10 to estimate LST by using 

a technique based on the Radiative Transfer Equation (RTE), as described in Equation (1). 

LST𝐵10 = 𝜏𝑖(𝜃)EiBi⁡(𝑇𝑠) + ((1 − 𝐸𝑖)𝐼↓) + 𝐼↑    (1) 

i(θ): atmospheric transmission for band 10 when view zenith angle is θ; 

Ei: surface emissivity of the band 10; 

Bi(Ts) : a ground radiance; 

I^↓ : Downwelling path radiance; 

I^↑ : Upwelling path radiance. 
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Fig. 3. Field Data. 

According to Plank’s law, ground radiance Bi(Ts) can be expressed as: 
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𝐵𝑖(𝑇𝑠) =
2ℎ𝑐2

𝜆𝐵𝑖
5 (exp⁡ (

ℎ𝑐
𝜆𝐵𝑖𝑘𝑇𝑠

) − 1)
 

(2) 

where c is the speed of light (c = 2.9979 x 108 m/s), h is the Planck constant (h = 6.6261 × 10-34 

J.s), k is the Boltzmann constant (k = 1.3806 ×10-23 J/K), λ represents the wavelength of TIRS 

bands (B10 = 10.602), and Ts is TOA brightness temperature. 

3.3.2. Soil Index 

 Soil is a substance with several chemical and physical components (Thenkabail, et al., 2004). In 

this study, we used the Normalized Difference Soil Index (SI) proposed by Deng (Deng, et al., 2015). 

They studied the spectrum reflectance of soil samples using Landsat-5 data and discovered that the 

mean reflectance values of bands NIR, SWIR1 and SWIR2 are greater than those of visible bands. In 

addition, they examined all potential band normalized difference combinations and concluded that 

the index obtained from the SWIR2 and green bands are superior for mapping soil information. 

𝑆𝐼 =
𝐺𝑟𝑒𝑒𝑛 − 𝑆𝑊𝐼𝑅2

𝐺𝑟𝑒𝑒𝑛 + 𝑆𝑊𝐼𝑅2
 (3) 

 

3.3.3. Water Index 

 McFeeters came up with the NDWI, which is the ratio of the green band to the NIR band 

(McFEETERS, 1996). Xu revised the NDWI to become the ratio of the green band to the SWIR band  

(Xu H. , 2006). Using Landsat 8 data, a previous study compared both methods developed by 

McFeeters and Xu, and found that the best way to map water bodies is to use both Green and SWIR 

(Du, et al ., 2014). Hence, in this study, we applied the equation for the water index made by Xu. 

Green Bands and SWIR1 were used in this method. 

𝑁𝐷𝑊𝐼 =
𝐺𝑟𝑒𝑒𝑛 − 𝑆𝑊𝐼𝑅1

𝐺𝑟𝑒𝑒𝑛 + 𝑆𝑊𝐼𝑅1
 (4) 

 

3.3.4. Vegetation Index 

 The normalized difference vegetation index (NDVI) is one of the most often used vegetation 

indices, and its value in satellite assessment and monitoring of global plant coverage has been well 

recognized over the last two decades (Huete, Justice, & Liu, 1994; Leprieur, et al., 2000). The formula 

is described as follows. 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 (5) 

3.3.5. Multicollinearity Test 

Implementing land use classification requires testing for SR and ancillary data redundancy. The 

solution to such a problem in this study was to use a correlation matrix between the SR bands/ancillary 

variables. From the study, if the correlation value was greater than 0.7, it was necessary to reduce 

several redundant variables before importing to a machine learning model, as shown in figure 4. 
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Fig. 4. Results of multicollinearity test to reduce redundancy of SR and ancillary data before importing to a 

machine learning model. 

(B2 = Blue band, B3 = Green band, B4 = Red band, B5 = Near Infrared band, B6 = SWIR-1 band, B7 = SWIR-2 band, 

NDVI = Normalized Difference Vegetation Index, SI = Normalized Differ-ence Soil Index, NDWI = Normalized Difference 

Water Index, NDMI = Normalized Difference Moisture Index, LST = Land Surface Temperature) 

3.4 Machine Learning Model 

3.4.1. CART 

 The classification and regression tree (CART) is a tree model used in the field of machine 

learning. CART creates a visualized decision tree to predict a categorical and continuing variable and 

hence this tree does not create classes of dependent variables. Rather than a classification tree, where 

an input space of variables is split into subspaces, each of them associates with a class of outputs. 

Dependent variables are the response values from each observation, given a set of independent 

variables. As a regression tree does not have preset classes, the output at each stage will be a response 

value from observations of new dependent variables. A minimization step is applied to create  

a splitting rule in a tree so that the projected sum variance from two nodes will be deduced. 

Proposed by Breiman et al. (Breiman, Classification and Regression Trees, 1984), the 

classification and regression tree is one of the most adopted methods for handling classification and 

regression problems. A CART model employs the Gini and least-squared method to deal with 

categorical and numerical problems, respectively (Breiman, 1996). Given the p^(th) sample is defined 

as (I_(p,1), I_(p,2),……I_(p,n)…. Op), where I_(p,n) is a value of the p^(th) sample with "n" features, 

and "Op" is an output value of the sample, minimization of the least-squared deviation under Equation 

(1) will help create a choice to split up a given tree into branches for a CART regression problem. 

 

1

𝑁
∑  

V∈U𝑟

(𝑂𝑝 − 𝑂̅𝑟)
2
+
1

𝑁
∑  

V∈U𝑙

(𝑂𝑝 − 𝑂̅𝑙)
2
 (6) 

where "Ur " and "Ul" are training data sets of right and left child nodes, and "N" is the total number 

of training samples, the outcome of the right and left nodes is denoted as 𝑂̅ and ( 𝑂̅𝑙). 
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3.4.2. Random Forest 

A random forest contains a set of tree classifiers, each of them is generated by using a random 

vector sampled discretely from a given input vector with a vote for the most popular class for 

categorizing an input vector (Breiman, 2001). The random forest then produces a tree by picking or 

combining features at each node separately. For each feature or combination of features, a technique 

called bagging to generate a dataset for training by choosing N instances for replacement randomly, 

given that N is the size of the original training set, is employed. Any instance is characterized by 

choosing the class having the highest voting score from all tree predictors within the forest. The design 

process of decision tree requires a selection measure and a pruning method. Several ways to pick 

characteristics for decision tree induction are available, and most tactics can clearly measure the 

attributes. The Information gain ratio and Gini index are mostly adopted attributes as selection metrics 

for induction of a decision tree. The random forest employs the Gini index as an attribute selection 

matrix which measures the impurity of an attribute about the classes. As depicted in Equation (7), for 

a given training set T, the Gini index is expressed as follows: 

∑∑  𝒋≠𝒊 (𝒇(𝑪𝒊, 𝑻)/|𝑻|)(𝒇(𝑪𝒋, 𝑻)/|𝑻|)  (7) 

 where f(Ci,T)/|T| is a probability that a selected instance fits into class Ci. 

A tree will be formulated each time to its maximum depth by utilizing a mix of features with 

new training data. The most mature tree remains as-is, this is a benefit of the random forest over other 

decision tree techniques. Findings reveal that pruning strategies impact the performance of tree-based 

classifiers rather than the attribute selection criteria (Pal & Mather, 2003). 

3.4.3. Support Vector Machine 

Introduced by Vapnik et al. (Vapnik, Golowich, & Smola, 1996), support vector machine (SVM) 

is a supervised classification method to reshape a non-linear environment into a linear one, and make 

a simple class computable through the generation of a hyper-plane. A kernel function is a 

mathematical function for transforming data. SVM uses a training dataset to transform an original 

input into a high-dimensional feature space. A hyper-plane is made from the points of tree classes in 

the original space of n coordinates. SVM computes the maximum difference across classes to form a 

classification hyper-plane at the center of the maximum margin. That is, if a point is above the hyper-

plane, it is considered as +1; otherwise, it is treated as -1. Support vectors are the training points 

nearest to the hyper-plane. The new data can then be classified after the decision surface is obtained; 

such decision surfaces can be utilized to classify auxiliary data. The method is defined over a vector 

space. The decision surface for a linearly separable space is a hyper-plane, which can be expressed as 

per Equation (8): 

                                                 𝑤𝑥 + 𝑏 = 0                                                                    (8) 

A vector “w” and constant “b” are derived from a training set of linearly separable items and 

“x” is an object for characterization. SVM can deal with a problem about linearly restricted quadratic 

programming such as in Equation (9), and the SVM solution is always globally optimal. 

𝐦𝐢𝐧𝝎  
𝟏

𝟐
∥ 𝝎 ∥𝟐+ 𝑪∑ 𝝃𝒊

𝒊
 (9) 

with constraints 

𝒚𝒊(𝒙𝒊𝒘+ 𝒃) ⩾ 𝟏 − 𝝃𝒊⁡𝝃𝒊 ⩾ 𝟎, ∀𝒊 (10) 

 By performing non-linear mapping for linearly inseparable objects, the original input data is 

converted into a higher dimensional space, and the linearly separating hyper-plane can be found in a 

new space without any additional computational complexity or quadratic programming problems by 
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applying a kernel function (Aizerman, 1964). In other words, to compute similarities across vectors 

in a high-dimensional space for a linearly inseparable problem, the kernel function is applied to reduce 

those similarities in the original lower dimensional space. 

3.5 Preparation of a Training Signature for the Classification of Oil Palm and LULC using a 

Machine Learning Model 

The spectral bands of Landsat 9 and their derived supplementary bands, as well as the ground 

sample points (representing each forest type and LULC), were opened in an R statistical program by 

utilizing raster (Hijmans, 2014) and rgdal (Bivand, 2002) packages. Extraction of training points from 

the stack images made up of all the spectral and derived ancillary bands was used to produce training 

signatures. Categorization of oil palm and LULC was finally done using a hierarchy. Six input datasets 

(ID) created for mapping and classifying oil palm and related LULC in Ranong Province were 

gradually categorized into a classification hierarchy. Each ID was made up of a variety of spectral 

data (George, Padalia, & Kushwaha, 2014). Blue, NIR and SWIR2 spectral bands were identified 

using Landsat 9 in the first stage and results were recorded. Next, an auxiliary variable was added to 

each ID, and its impact on classification accuracy was assessed using the overall accuracy and Kappa 

coefficient (Tab. 3). In this experiment, three machine learning models were used: Random Forest, 

Support Vector Machine and CART, and an auxiliary variable was examined in terms of its impact. 

Table 3.  

Surface Reflectance (SR) and Auxiliary Variable 

Auxiliary Variable Description 

ID 1  Surface Reflectance (SR) of Blue, Near Infrared, SWIR-1 

ID 2 Surface Reflectance (SR) of Blue, Near Infrared, SWIR-1 + NDWI 

ID 3 Surface Reflectance (SR) of Blue, Near Infrared, SWIR-1 + NDWI + NDVI 

ID 4 Surface Reflectance (SR) of Blue, Near Infrared, SWIR-1 + NDWI + NDVI + LST 

4. RESULTS AND DISCUSSION 

4.1. Overall Accuracy Results and Kappa Coefficient of the Machine Learning Model 

Overall Accuracy simply informs us of the percentage of reference locations that were accurately 

mapped. The Kappa Coefficient is a statistical test for classifying accurately. Kappa measures how 

well a categorization fared relative to randomly assigned values. Table 4 shows overall accuracy 

results and the Kappa coefficient of Land Use/Land Cover classification in Ranong Province. For ID1 

(Surface Reflectance (SR) of Blue, Near Infrared and SWIR-1), it was found that the Random Forest 

model had OA = 0.9103 and KC = 0.8951. OA and KC would increase with the added variables, as 

ID4 (Surface Reflectance (SR) of Blue, Near Infrared, SWIR-1 + NDWI + NDVI + LST) resulted in 

OA = 0.9341 and KC = 0.9239, which were the highest among 12 models. Most interesting was that 

the CART model under ID2 (Surface Reflectance (SR) of Blue, Near Infrared, SWIR-1 + NDWI) and 

ID3 (Surface Reflectance (SR) of Blue, Near Infrared, SWIR-1 + NDWI + NDVI) had OA = 0.8646, 

0.9239 and KC = 0.8427, 0.9103, respectively, and were higher than the Random Forest model under 

ID2 and ID3. Details of the OA and KC values of all models can be found in table 4 and figure 5. 

Only the parts with the highest OA and KC values of map ID4 of CART and RF are shown in figure 

6. In terms of Bare Soils, some models had low producer accuracy, particularly in the ID1 model 

(Surface Reflectance (SR) of Blue, Near Infrared and SWIR-1). However, after adding more 

variables, it was found that producer accuracy of such models was higher. Other models had mixed 

results of producer accuracy and user accuracy in land use/land cover classification. In terms of oil 

palm, it was found that every SVM and RF in ID 4 is the model that produces the best results. Forest, 

mangrove, built-up area and water bodies, as well. The classification details using SVM in Oil Palm 

SVM give the best results over RF, but RF gives OA and KC of all classifications better than SVM. 
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Table 4. 

Overall Producer and User Accuracy of Land Use/Land Cover Classification  

in Ranong Province. 

Model Bare Soil Oil Palm Orchard Forest 
Evergreen 

Forest 

Man 

grove 
Rubber 

Built Up 

Area 

Water 

Bodies 
OA KC 

RF 

ID1 UA 1.00 1.00 0.44 1.00 0.94 0.89 1.00 1.00 1.00 0.91 0.90 
 PA 0.33 0.67 0.80 1.00 0.85 1.00 1.00 1.00 1.00   

ID2 UA 0.50 1.00 0.57 1.00 0.67 1.00 0.88 1.00 1.00 0.86 0.83 
 PA 0.50 1.00 0.80 0.90 0.92 1.00 0.50 1.00 1.00   

ID3 UA 1.00 0.67 0.50 1.00 0.91 1.00 1.00 1.00 1.00 0.91 0.89 
 PA 0.50 1.00 0.83 1.00 0.95 1.00 0.56 1.00 1.00   

ID4 UA 0.50 1.00 1.00 1.00 0.81 1.00 0.83 1.00 1.00 0.93 0.92 
 PA 1.00 1.00 0.80 1.00 0.93 0.86 0.91 1.00 1.00   

SVM 

ID1 UA 0.00 1.00 0.38 1.00 0.67 1.00 0.75 1.00 1.00 0.82 0.79 
 PA 0.00 1.00 0.60 1.00 0.92 1.00 0.23 1.00 1.00   

ID2 UA 1.00 1.00 0.44 1.00 0.71 1.00 1.00 1.00 1.00 0.86 0.84 
 PA 0.67 1.00 1.00 1.00 0.92 0.91 0.50 1.00 1.00   

ID3 UA 1.00 1.00 0.25 1.00 0.89 1.00 0.91 1.00 1.00 0.89 0.87 
 PA 0.50 1.00 1.00 1.00 0.89 1.00 0.63 1.00 1.00   

ID4 UA 1.00 1.00 0.60 1.00 0.93 0.93 0.72 1.00 1.00 0.88 0.87 
 PA 0.33 0.40 1.00 1.00 0.93 1.00 0.81 1.00 1.00   

CART 

ID1 UA 1.00 0.67 0.40 1.00 0.81 0.94 1.00 1.00 1.00 0.88 0.86 
 PA 0.33 0.67 0.57 1.00 0.87 1.00 0.81 1.00 1.00   

ID2 UA 1.00 0.50 0.56 1.00 0.75 1.00 0.81 1.00 1.00 0.86 0.84 
 PA 0.67 0.33 0.71 1.00 0.88 1.00 0.68 1.00 1.00   

ID3 UA 1.00 1.00 0.44 1.00 0.89 1.00 1.00 1.00 1.00 0.92 0.91 
 PA 1.00 1.00 1.00 1.00 0.89 1.00 0.72 1.00 1.00   

ID4 UA 0.67 1.00 0.60 1.00 1.00 1.00 0.82 1.00 1.00 0.91 0.90 
 PA 1.00 0.60 0.86 0.90 0.90 1.00 0.90 1.00 1.00   

 

 
 

 
 

Fig. 5. OA and KC values of all models.   
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(a) Landsat 9  (b) CART (ID4) (c) RF (ID4) 

 

   

 

 

 

 

 

 

 

 

 

 Bare Soil  Rubber  Orchard  Forest  Evergreen Forest  Mangrove  Oil Palm 

  Built-Up Area  Water Bodies 

Fig. 6. Example of the improvements of using Surface Reflectance (SR) and Auxiliary Variable (a) Landsat 9 

imagery; (b) Results of using CART and Surface Reflectance (SR) of Blue, Near Infrared, SWIR-1 + NDWI + 

NDVI + LST; (C) Results of using RF and Surface Reflectance (SR) of Blue, Near Infrared, SWIR-1 + NDWI 

+ NDVI + LST 

 

Table 5 shows the difference in results of LULC classification on oil palms. Compared to the 

facts from the Department of Land, ID4 (Surface Reflectance (SR) of Blue, Near Infrared, SWIR-1 + 

NDWI + NDVI + LST) of CART and RF models gave the classification results closest to the facts 

from the Department of Land. The reason for choosing these two models was that both OA and KC 

values were the most accurate. When considered at the district level, it was found that the ID4 of RF 

models provided classification results of oil palms very close to the facts per the figure of 2.90 sq.km. 

(1,814 Rai) from the Department of Land, especially for Kra Buri District. The discrepancy between 

classification of oil palms and actual data was only 83,200 sq.m. (52 Rai). Details of such differences 

can be found in table 5. 
Table 5. 

Difference in the results of LULC classification on oil palms. 

District 

  

Land  

Development  

Department  

CART (ID4)  RF (ID4) 

 

 Classified   Difference  Classified   Difference  

KRA BURI 29,396  29,174  222  29,448  52  

MUEANG RANONG 15,227  15,090  137  12,349  2,878  

KAPOE 28,578  30,180  1,602  30,398  1,820  

LA-UN 14,438  15,090  652  13,299  1,139  

SUK SAMRAN 9,170  11,066  1,896  9,500  330  

Ranong Province  96,809  100,599  3,790  94,995  1,814  
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4.2. Mean Decrease Gini 

Mean Decrease Gini (IncNodePurity) - is a measure of variable importance based on the Gini 

impurity index used for calculating the splits in trees. The first feature and B2 and NDVI shows a 

high Gini impurity index in the classification model; hence, these features are important for detection 

of land use/land cover classification, as shown in figure 7.  

 

Fig. 7. Mean Decrease Gini of ID4 in a random forest model. 

This study demonstrates the capability of using Landsat 9 satellite images for land use/land cover 

classification. Moreover, using the machine learning model we can precisely classify land use/land 

cover, especially for oil palms. This study found that multicollinearity is a tool that can significantly 

reduce variable redundancy. When the remaining variables were used for the Land Use/Land Cover 

Classification experiment, it was found that variables obtained by fusion data methods such as NDWI, 

NDVI and LST all resulted in greater accuracy. In addition, machine learning algorithms provide 

good land use/land cover classification results, especially RF models with the highest OA and KC 

results. In terms of local economic plants, oil palm, SVM and RF models provided good classification 

results in both models. This is consistent with Xu’s study, which found that Landsat 8 and Sentinel 

can classify land use/land cover by machine learning (Xu, et al., 2021). Such studies can also classify 

the life cycle of oil palms using RF as a model, as in this study. In addition, current studies prefer to 

increase classification accuracy by using the data fusion technique. This technique is a method to 

bring together different and diversified remote sensing data sources to create new or representative 

data with the objective of improving data quality, adding more dimensions of data leading to an 

increase in classification accuracy. This study approach results in more accurate classification than 

using SR Bands alone. This is consistent with studies by Xu, Shaharum, Poortinga (Xu, et al ., 2021; 

Shaharum N  .  S ., et al ., 2020; Poortinga, et al ., 2019), especially for Rehman, who found that the 

multicollinearity test can be used to eliminate factors, removing redundancy of the variables before 

land use/land cover classification (Rehman, et al., 2021). Besides, Rehman found that adding factors 

such as indices gradually results in a more accurate model. Like this study, when looking into details, 

it was found that the SR band 2 NDVI index has more influence on classification, which is consistent 

with Manandhar’s study (Manandhar, Odeh, & Ancev, 2019). 

5. CONCLUSIONS 

This study highlights the benefits of using more than one data source to create a higher quality 

dataset and found that machine learning can classify plantations very well. Other researchers can 

apply such an approach to study other plantations in the future. This study found that, currently, land 

use/land cover classification cannot use only SR bands alone, so a data fusion technique is necessary 

to create new or representative data with the aim of improving the quality of information. It found 

that a machine learning model could also classify land use/land cover precisely. The findings of this 

study are consistent with several previous studies. Further studies may use a data fusion technique 
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with SAR data to come up with detailed information reflecting objects on the surface of Earth, or use 

Google Earth Engine, a massive, systematically compiled data fusion source to further expand the 

project's success. Such techniques could also be applied to other plants in the future. 
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