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                ABSTRACT: 

Mapping agricultural land cover data is important as an effort to support national food security, 

especially in Boyolali, Central Java Province, Indonesia which is one of the national rice granaries. 

However, mapping in the mountain slope area using optical data only is challenging due to cloud cover. 

The development of remote sensing technology has encouraged the possibility to integrate data with 

different sensors. This data integration is needed to optimize the ability to detect and map cropland that 

has a variety of characteristics. Therefore, this study aims to identify the cropland through the 

integration of time-series optical and Synthetic Aperture Radar (SAR) data. Detection of cropland was 

carried out using 2021 data. Polarisation of VV, VH, and ratio of VV/VH data was derived from the 

Sentinel-1, whereas image indices of Normalized Difference Vegetation Index (NDVI), Normalized 

Difference Water Index (NDWI), and Soil Adjusted Vegetation Index (SAVI) data were obtained from 

Sentinel-2. Data of Sentinel-1 and Sentinel-2 was combined and several features were selected based 

on their importance score. Random Forest (RF) classification was then performed. The result show that 

the mapping using integrated data could improve the accuracy. This indicates the possibility of data to 

be implemented in further studies such as the cropland type mapping and the estimation of food 

productivity. 
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1. INTRODUCTION 

The need for accurate land cover data, especially cropland, cannot be separated from its 

important role to support strategic planning in a region. Data on where and when the cropland planted, 

as well as the accessibility are critical as a basis for effective measure on maintaining national food 

security (Susilo & Harini, 2018). Since land cover extent is dynamic, therefore, the observation should 

be done in a timely manner. In particular, the Indonesian government has launched the Nawacita 

program in 2015 where the national food self-sufficiency becomes one of priority targets in national 

development. For that reason, the accurate data on cropland is highly essential not only for national 

but also the global purpose as it is also mentioned in the Sustainable Development Goals (SDGs). 

Remote sensing technology plays a role in extracting and monitoring land cover which is known 

to have variations in spectral, temporal, and spatial resolution. Remote sensing with optical sensors 

has been widely used for land monitoring (Gumma et al., 2019; Piao et al., 2021; Sarono et al., 2015), 

but the image quality and accuracy of mapping using this sensor depends on atmospheric conditions. 

Primarily the use of optical data is a challenge due to high cloud interference in tropical countries.  

To overcome these cloud problems, there is a Synthetic Aperture Radar (SAR) data which has the 

advantage of recording that is not affected by weather conditions. In other words, remote sensing has 

been developed in different specifications, so there are more approaches in land detection, such as 

combining optical and SAR imagery (Joshi et al., 2016).  
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The complexity in agricultural area creates a challenge in mapping cropland using optical data 

(Fritz et al., 2015). Not only that, specifically rice crop is also cultivated in different land-climatic and 

ecosystems following the sequence in topography, from upland, rainfed lowland, irrigated, to flood 

prone area (Kuenzer & Knauer, 2012). Despite the relatively high revisit time of Sentinel-2, the 

observation of cropland in the cloud-prone tropical and sub-tropical area using this data only is still 

challenging (Singha et al., 2019). Thus, data integration with Sentinel-1 that is independent of sun 

illumination (Kuenzer & Knauer, 2012) is potential to help mapping cropland in such condition. 

Recently, the combination of optical and SAR data crop has been employed in the subtropical area 

using backscatter from Sentinel-1 and NDVI from Sentinel-2 data (Cai et al., 2019). Also, observation 

of paddy field in the tropical lowland coastal area has also been conducted using Sentinel-1 and 30-

m resolution of Landsat data (Arjasakusuma et al., 2020), making a limitation in capturing smallholder 

fields. In this context, to date the ability of integration Sentinel-2 and Sentinel-1 to map cropland in a 

tropical mountain slope region has not been given much attention. 

Furthermore, in the last decade, the use of machine learning algorithms for remote sensing has 

received a lot of attention. The application is mainly related to the study of land cover/use 

classification. Algorithms commonly used to date include support vector machines (SVM), decision 

trees, random forests (RF), and convolutional neural networks (CNN) (Sheykhmousa et al., 2020). 

These methods have advantages in terms of complex pattern retrieval capabilities and informative 

features of remote sensing satellite imagery. In this case, Random Forest (RF) was implemented for 

classification as it is known to improve the classification accuracy for time-series data without 

overfitting problem (Piao et al., 2021).  

Given the above background, the general objective of this study is to map cropland based on the 

integration of optical and SAR time-series data. In addition, to capture the timely or seasonal spectral 

variability of different land cover, the multi-temporal remote sensing data is required. Feature 

selection will be performed to choose the most informative inputs for classification and RF classifier 

would be implemented for mapping. Then, a comparison of accuracy would be conducted among 

classification results using Sentinel-1, Sentinel-2, and the integration of them. 

2. STUDY AREA AND DATA 

2.1. Study area 

The study was carried out in Regency of Boyolali, Province of Central Java, Indonesia. According to 

the department of regional statistic (BPS Boyolali, 2021), rice crop is the dominant crop in Boyolali 

(Fig.1) and its harvesting area reached 47,760.01 hectares with a total production of 225,425.92 ton 

in 2020. This makes the regency becomes the ninth largest rice producer in Central Java. Boyolali is 

situated in the slope area of two volcanos, the Mount Merapi (2,910 m) and Merbabu (3,145 m) in the 

western side (Fig.2). The elevation varies between 75-1,500 msl. 

 
Fig. 1. Harvested area (hectares) of different crop in Boyolali in 2019 (Source: Regional statistics, 2020). 
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Fig. 2. Location of Boyolali, Indonesia shown in: a) Sentinel-2 data (RGB composite using NIR, red, and 

green band, respectively); b) Sentinel-1 VV data; and c) Hillshade from ASTER GDEM data. 

2.2. Synthetic Aperture Radar (SAR) data collection and processing 

One of the products of the Sentinel satellite project is Sentinel-1. It uses a C-band SAR sensor 

where object identification is based on backscatter. In this study, Sentinel-1 time-series data will be 

used to extract backscattering of land cover classes. The data selected is Sentinel-1A Level 1 Ground 

Range Detected (GRD) with dual polarisation (VV and VH) which was downloaded from 

https://scihub.copernicus.eu/dhus/#/home. The data acquisition period is April, July, and August 

2021, taking into account a whole cropping season from rice crop calendar since it is the dominant 

crop in the study area (Fig.1). The characteristics of data used in the study is presented in Table 1. 
 

                                                                                                                  Table 1. 

Specifications of Sentinel-1 data used in the study. 

Satellite Sentinel-1A 

Height/inclination 693 km/98.18º 

Wavelength C-band (3.75 – 7.5 cm)/ 5.405 GHz 

Polarisation VV+VH  

Pixel spacing 10 m 

Acquisition date April, July, and August 2021 

 

GRD product is Sentinel-1A data that has been calibrated radiometrically. The next step is the 

use of Refined Lee filters to remove speckle effects (Argenti et al., 2013). A geometric correction was 

done through the Sentinel application platform (SNAP) program, which is a software developed by 

European Space Agency (ESA). For this purpose, the Shuttle Radar Topography Mission (SRTM) 1 

arc-second resolution data was used directly in SNAP. Finally, the image is then cropped using the 

Boyolali administrative boundary from the Global Administrative Area (GADM). Then, three 

datasets of polarisations were produced (VV, VH, and ratio of VV/VH) to explore the spectral 

variations of land covers.  

 

https://scihub.copernicus.eu/dhus/#/home
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2.3. Optical data  collection and processing 

Sentinel-2 level 2A was used as the optical data. This data has been corrected radiometrically 

and geometrically, as its numbers represent the reflectance at the Bottom of Atmosphere (BOA) level 

so that it can be used immediately. We applied the function to collect monthly composite image in 

Google Earth Engine (GEE) environment following steps in https://developers.google.com/earth-

engine/datasets/catalog/COPERNICUS_S2_SR. Median function was used for the composite image. 

To filter cloudy scenes, a maximum cloud percentage of 30% was set as the limit because no 

good image is available below that. The time-series images were then cropped based on the 

administrative coverage of Boyolali Regency using administrative data from GADM. Specifications 

of data used for the study is presented in Table 2.  
                                                                                                                                        Table 2. 

Specifications of Sentinel-2 data used in the study. 

Satellite Sentinel-2A 

Wavelength (spatial resolution) Band 3, 4, and 8 for Green, Red, and NIR respectively (10 m) 

Level Level-2A 

Acquisition date April, July, and August 2021 

3. METHODS 

3.1. Image Indices 

 In the next step after the pre-processing of Sentinel-2 data, three vegetation indices were 

produced.  Those vegetation index algorithms were used for the RF classification input. Sentinel-2 

images were processed and its pixel values were transformed into Normalized Difference Vegetation 

Index (NDVI), Normalized Difference Water Index (NDWI), and Soil Adjusted Vegetation Index 

(SAVI) as stated in formula 1-3. NDVI is one of the most commonly used for vegetation studies, 

while SAVI has capability to minimize the effect of soil brightness (Sashikkumar et al., 2017). In 

addition, NDWI is sensitive to the moisture of plants and soil enabling better discrimination between 

crop and surface water body (Bhattacharya et al., 2021).  

 

     𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
                                                                           (1) 

 

   𝑁𝐷𝑊𝐼 =  
𝐺𝑟𝑒𝑒𝑛 − 𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛 + 𝑁𝐼𝑅
                                                                      (2) 

 

   𝑆𝐴𝑉𝐼 =  
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑 + 𝐿
∗ (1 + 𝐿)                                                    (3) 

 

where, NIR, Red, and Green is the pixel values for each band, respectively, and L is the soil 

adjustment factor (0.5). SAVI was used to normalize the subtractive soil variations by applying an 

adjustment factor (L) to reduce the soil background variations. The L values were adjusted lower as 

vegetation cover increased (Mostafiz et al., 2021). L value 0.5 was used in this study, considering the 

medium levels of vegetation cover in the whole area and for crop detection. 

 
3.2. Image classification process 

For this study, three RF classification schemes of multi-temporal data were conducted using (1) 

image indices (NDVI, NDWI, and SAVI) from Sentinel-2 dataset only, (2) VV, VH, and ratio of 

VV/VH dataset only, and (3) the integration of the first and second dataset. There were five 

classification classes used, namely cropland, built-up, water body, bare land, and forest. Plots of all 

classes were visually identified using a high-resolution imagery in Google Earth Pro. In total, 100 

plots were taken for each built-up, forest, and cropland class, whereas, 50 plots were identified for 

https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR
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each water body and bare land. Plots were then divided into 70% for the training data in RF 

classification and 30% for the accuracy measurement test. Fig. 3 shows the distribution of training 

and validation plots. 

 
 

Fig. 3. Plots distribution for a) all land cover types and b) cropland only.  

 

After creating a stack containing Sentinel-1 and 2 images, we calculated the variable importance 

to assess the relevant inputs for random forest classification.Variable importance scores were 

calculated based on Gini coefficient in ArcGIS Pro 2.9.0. The number indicates the frequency of a 

variable is responsible for a split in the model Feature selection entails the most informative features 

to reduce the effect of high-dimensional data (Akbari et al., 2020). In the RF classification, the 

maximum ntree was set at 50, maximum number tree depth was 30 and maximum number of samples 

per class was 1000. Converged color and mean digital number were included as the segment attributes. 

The overview of all steps taken in this study is presented in Fig. 4. 

 

 

Fig. 4. Steps on the integration of Sentinel-1 and 2 data. 



113 

 

 

 

 

4. RESULTS 

4.1. Key Classification in Sentinel-1 

The result of pre-processing Sentinel-1 data is as follows. Fig.5 shows the appearance of built-

up, forest, water body, cropland, and bare land observed through Sentinel-1 (VV, VH, and the RGB 

composite). From the figure, it can be seen that every land cover has distinct characteristics of SAR 

backscatters. Built-up area gives brighter pixels compared to water body and bare land area. This 

indicates the higher level of backscatter from built-up area caused by the double bounce and corner 

reflectance (Deepthi et al., 2018). Meanwhile, the forest and cropland areas were identified having 

more colour variations in the pixels. In comparison to the cropland, forest areas however, have a 

slightly brighter tone as their dominant scattering mechanism are from the volume scattering related 

to the higher biomass in canopies and the double- bounce effect from the vertical trunk structure 

(Ningthoujam et al., 2016). 

 

 
 

Fig. 5. Visual key interpretation of Sentinel-1 (VV, VH, and RGB composite VV, VH, VV/VH) data, 

showing A: built-up, B: forest, C: water body, D: cropland, and E: bare land. 
 

Since a time-series data was used, the temporal variation of each land cover class can be observed 

in Fig. 6. The figure shows that cropland has a backscattering pattern that is different from other land 

covers. This change in backscattering is related to the growth phase of crop (Nguyen & Wagner, 

2017). Built-up areas have the highest backscatter and relatively constant throughout the period, while 

water bodies remain giving the lowest backscatter response among other classes.  

The classification results in Table 3 shows that the classification accuracy of using Sentinel-1 

data, giving the overall accuracy of 78%. For the user’s accuracy, the value of bare land, cropland, 

and water body were high (100%, 88.46%, 83.33%, respectively). Meanwhile, high producer’s 

classification accuracies were identified for the class of water body (100%), forest (80%), and built-

up area (70%). The result suggests that high accuracy is gained for the stable class such as water body 

(Piao et al., 2021). 
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Fig. 6. Value dispersion of training data of every land cover class on VV, VH, and ratio VV/VH data. 

 

Table 3. 

Confussion matrix based on Sentinel-1. 

 

Sentinel-1 
Reference data   

Built Up Forest Water Body Cropland Bare Land UA 

C
la

ss
if

ie
d

 d
a
ta

 Built Up 21 5 0 4 1 67.74 

Forest 8 24 0 3 0 68.57 

Water Body 0 0 15 0 3 83.33 

Cropland 1 1 0 23 1 88.46 

Bare Land 0 0 0 0 10 100.00 

  PA 70.00 80.00 100.00 76.67 66.67   

 Overall Accuracy 78%           

4.2. Spectral Indices from Sentinel-2  

Fig. 7 presents the results of NDVI, NDWI, and SAVI over the study area. As shown in the 

figure, the distribution value of each index varied during the observation period. Overall, in April, the 

area was dominated by the high NDVI and SAVI value, especially in the northern part of region. This 

means that there was a high level of greenness on that period as the rainy season occur. In July, when 

the dry season occurred, most part of the region were in the middle and low value of all indices. High 

NDVI and SAVI value, however, were seen in the southwestern part where top of Mount Merapi and 

Merbabu located (Fig.2). For the last observation period, almost all areas were covered by the 

moderate and low value of NDVI, NDWI, and SAVI. The dryness condition in particular can be 

detected in the northern part of Boyolali. These value differences could be caused by different planting 

cycles of crop. 
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Fig. 7. NDVI, NDWI, and SAVI distribution over the study area in April, July, and August 2021. 
 

Based on the statistical distribution of indices values (Fig.8), NDVI and SAVI values of the 

cropland showed similar ranges of value in the three months of observation. The best result of 

cropland classification was in August, with the shortest-range value. The median was similar to April's 

result, while July had the highest range and the lowest median. Built-up and water bodies were well 

defined in the three-month observations shown by the short range and similar median of NDVI and 

SAVI value. Forest was better in April and July results because the ranges of values increased in 

August. Bare land had a similar median value in the three months, but the distribution values varied 

in several parts of the area. 

Furthermore, Table 4 gives information on the classification accuracy derived from Sentinel-2 

only dataset. In general, the classification produced an overall accuracy of 89% which was higher 

compared to the result of Sentinel-1 dataset (Table 3). Bare land and forest gave the highest values 

with 100% of user’s accuracy, whereas built-up and water body area had 100% of producer’s 

accuracy. For the cropland, it produced a user’s and producer’s accuracy of 89.66% and 83.87, 

respectively. In our findings, the use of vegetation indices increased the detection accuracy, 

supporting outcomes from earlier study (Panda et al., 2010). SAVI, in particular, reduces the noise of 

classification resulting from the soils and the moisture influences of the output (Panda et al., 2010). 

In this case, soil background influences the spectra of partially vegetated canopies, therefore, 

vegetation indices are required.  
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Fig. 8. Value distribution of NDVI, NDWI, and SAVI data for every land cover class. 

Table 4. 

Confussion matrix based on Sentinel-2. 

 

Sentinel-2 
Reference data   

Built Up Forest Water Body Cropland Bare Land UA 

C
la

ss
if

ie
d

 d
a
ta

 

Built Up 30 1 0 3 4 78.95 

Forest 0 26 0 2 0 92.86 

Water Body 0 0 15 0 0 100.00 

Cropland 0 2 0 26 1 89.66 

Bare Land 0 0 0 0 10 100.00 

  PA 100.00 89.66 100.00 83.87 66.67   

 Overall Accuracy 89% 
 

        
 

 4.3. Cropland Area Distribution 

The importance degree of variables used in RF classification is presented in Fig.9.  

 
Fig. 9. Value of variable importance in Random Forest classifier. 
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It is shown that NDVI had the highest score among other 17 variables, followed by NDWI, and 

SAVI. In the first to ninth position, the high score was dominated by NDVI, NDWI, SAVI, and VV 

polarisation. From this finding, therefore, we selected those four variables as inputs for RF 

classification.  

Fig.10 and Fig.11 shows the actual condition of cropland plots in different characteristics of 

study area. In Fig.10, croplands in the upper slope of Mount Merapi and Merbabu are presented, 

showing the planted crops are dominated with a non-rice crop, such as vegetables and cassava. 

Meanwhile, the croplands located in the lower slope are shown in Fig.11. Croplands near to the water 

body were characterized by the irrigated rice field, as the high access and availability of water 

regardless the season (Fig.11a), whereas dry croplands were more prominent in the high populated 

urban area (Fig. 11b). Rice fields were also detected in the less populated urban area (Fig. 11c). The 

observed conditions from both figures, we can see that the croplands are attributed to the physical 

conditions, for example the topography, water, and agroecology characteristic (Widiyanto, 2019).  

 

 
 

Fig. 10. Croplands condition in the upper slope of study area taken in August 2022. 

 

 
 

Fig. 11. Cropland areas taken in August 2022. Characteristics: (a) near to water body, (b) in high 

populated urban region, and (c) in less populated urban region.  
 

Implementation of RF classification with Sentinel-1 and Sentinel-2 dataset resulted a land cover 

map for Boyolali Regency (Fig.12) with an overall accuracy of 89% (Table 5). Cropland specifically, 

gained user’s and producer’s accuracy of 80% and 93.33%, respectively. Looking at the correct 

classified plots, this accuracy is higher in comparison to the previous scenarios using Sentinel-1 and 

Sentinel-2 alone for the input. Similarly, with RF method, a high classification accuracy was yielded 

for cropland mapping conducted by (Phalke et al., 2020). 
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Table 5. 

Confussion matrix based on Sentinel-1 and 2. 

 

Sentinel-1 and 2 
Reference data   

Built Up Forest Water Body Cropland Bare Land UA 
C

la
ss

if
ie

d
 d

a
ta

 

Built Up 28 0 0 1 4 84.85 

Forest 0 27 0 1 0 96.43 

Water Body 0 0 15 0 0 100.00 

Cropland 2 3 0 28 2 80.00 

Bare Land 0 0 0 0 9 100.00 

  PA 93.33 90.00 100.00 93.33 60.00   

 Overall Accuracy 89% 
 

        
 

From Fig.12, it can be seen that dense built-up areas were in southern part of regency where the 

government officials are located. Water bodies, on the other hand, were only located at certain points 

and not evenly distributed. This condition may bring influences on the cropland characteristic based 

on the water use (irrigated and rainfed field) over the area.  

 

 
 

Fig. 12. Land covers from a) Sentinel-1; b) Sentinel-2; c) Sentinel-1 and -2. Figure d showing the 

cropland distribution based on Sentinel-1 and -2 data. 
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5. DISCUSSION 

In this study, a different approach of mapping cropland area was taken. An integrated of optical 

data from Sentinel-2 and SAR data from Sentinel-1 was conducted to improve the accuracy of 

mapping. Based on our observation, we found that the integration of time-series optical and SAR data 

improved the capability of cropland detection. The proposed approach enables the combination of 

advantages form each data. Optical sensor of Sentinel-2 uses NIR, and green band that highlight the 

reflectance of vegetation. Additionally, implementation of vegetation indices also suppresses the 

influence of soil spectra in red band. On the other hand, Sentinel-1 with SAR sensor is beneficial for 

the observation in area with high cloud cover as in the mountainous area. The use of different 

polarisation, its combination, and the textural features could enhance the capability of identification 

for each land cover class (Haris et al., 2021; Priyono et al., 2022; Qi et al., 2012).  

Based on our results, although there was no difference in overall accuracy between data of 

Sentinel-2 alone and the integration of Sentinel-1 and -2, the correct classified pixels for cropland and 

its PA were higher when using the integrated data. This implies the effectiveness of selected inputs 

performance for distinguishing cropland from other classes. Applying feature selection process, 

therefore, is still worth to do as it provided improvement in the accuracy of cropland detection. 

According to our findings, the evaluation of relative variable importance showed that all of image 

indices (NDVI, NDWI, and SAVI) from Sentinel-2 had the high contribution to the classification. 

The superior importance of NDVI was encouraging the demonstration of this index applied for 

mapping in a complex cropland region (Estel et al., 2016) and in a smallholder agricultural landscape 

(Rufin et al., 2022). In addition, only VV backscatter appeared more contributing than other variables 

from Sentinel-1 data. It is mainly due to VV better separability performance in discriminating water 

and bare land classes (el Mortaji et al., 2022) as similar finding was also reported by (Abdikan et al., 

2016). The present results support the previous observation by Koley & Chockalingam (2022) that 

using SAR data alone is not sufficient for cropland mapping, despite its wide applications in mapping 

rice crop specifically because the distinct soil moisture condition in the start of crop growing season 

(Kuenzer & Knauer, 2012). 

For future work, the use of this approach for mapping different cropland type is encouraged to 

fully understand the temporal, spectral, and spatial dynamic of each crop. Since our study lack 

information of crop type, this might contribute to the misclassification in the cropland. Apart from 

that, study on cropland mapping and monitoring is essential in regards to the food security matter. In 

fact, specifically in the study area from 2017 to 2019, its harvested area has decreased (Fig. 13). If 

the proportion of built-up that surrounds cropland is large and there is no policy preventing it, then 

this will affect crop productivity and further damage the food security. Findings on this study 

approach, therefore, could be beneficial for the improvement of cropland data accuracy supporting 

the regional planning policy.  

 
Fig. 13. Crop harvested area (in hectares) in Boyolali Regency from 2017 to 2019 (Source: Regional 

statistic, 2018-2020). 
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6. CONCLUSIONS 

We demonstrated a different approach of mapping cropland area through an integrated of optical 

data from Sentinel-2 and Synthetic Aperture Radar (SAR) data from Sentinel-1. This particular 

approach was implemented in the mountainous slope area where generally high cloud cover occurs. 

Feature selection was also performed resulting NDVI, NDWI, SAVI, and VV polarization as the high 

importance variables. According to the results, random forest as a machine learning-based classifier 

could give overall accuracy of 78%, 89%, and 89% from Sentinel-1, Sentinel-2, and the combined 

data, respectively. Although the same overall accuracy between Sentinel-2 and combined data, the 

results show that the combination of optical and SAR data could increase the producer accuracy. 

Therefore, the results of the comparison show that the approach allow an improvement of cropland 

detection across the different slope area.  
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