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ABSTRACT : 

Surabaya is facing the threat of climate change indicated by the increase in air and surface temperature. 

The city has a risk of sinking by 2050 if the global warming cannot be resolved. Several related studies 

established that the change in land cover and land use is accompanied by the increase in surface 

temperature, which will be addressed in this present study. Therefore, this study aimed to examine the 

impact of land use/cover on the increase in air/surface temperature and investigate the contribution of 

land cover indicators to climate change in Surabaya as the basis of the identification of spatial climate 

change vulnerability. Data were collected from satellite images obtained over a long period and 

processed with GIS-based software to obtain an overview of changes. Mined long-term historical 

climate data and satellite imagery were processed into a land surface temperature map (LST), 

describing the tendency of climate change. The satellite imagery data from 2013 to 2021 was used to 

have an overview of land use and land cover changes based on indicators of built-up area (NDBI), 

surface imperviousness (NDISI), vegetation (NDVI), and water (NDWI). The contribution of each 

indicator to the surface temperature was analyzed using the multivariate regression method. The 

significant contribution of the land cover indicators to the surface temperature as the results means that 

NDBI, NDISI, NDVI, and NDWI can be used as indicators in climate change vulnerability assessment. 

The sequential contribution weights to the surface temperature are NDISI, NDWI, NDVI, and NDBI. 

Furthermore, the climate change vulnerability map of Surabaya City was developed based on the 

contribution weights, which the pattern of vulnerability levels corresponds to the pattern of water index 

values. 
 

Key-words: Climate change vulnerability, Land cover indicator, Satellite imagery, Surface 

temperature. 

1. INTRODUCTION 

The occurrence of climate change is marked by an increase in global surface temperature of 

0.86oC from 2006 to 2015, accompanied by frequent hot airwaves and an increase in the frequency 

and intensity of rainfall (IPCC, 2019). The 2015 Paris Climate Agreement requires countries to limit 

global warming to 1.5oC by 2050 due to its increased risks to health, livelihoods, food security, and 

water supplies (IPCC, 2021). The Meteorology, Climatology, and Geophysics Agency results from 

1960 to 2021 showed an increase in air temperature in Indonesia from 0.8 to 1.4 o C (BMKG, 2022). 
Aside from the temperature rise, global warming is also indicated by the increase in sea level, whereby 

Jakarta, Surabaya, and other capital cities in the northern coast of Java are predicted to sink in 2050, 

as stated in Climate Central (2022). 

According to the International Panel on Climate Change, the adverse impact risk of climate 

change depends on the hazard, exposure, and vulnerability (Allen et al., 2018). In the context of 

climate change, vulnerability is the degree to which a system is amenable to the hostile impacts of 

climate change, including climate variability and extremes. (IPCC, 2007; Gumel, 2022). A system is 

considered vulnerable when it is exposed and shows sensitivity to climatic changes with low adaptive 

capacity. Hence, assessment of vulnerability to climate change is very important to identify hot spots 

 
1 Department of Architecture, Universitas Atma Jaya Yogyakarta, Jl. Babarsari 44 Sleman 55281, Indonesia, 

floriberta.binarti@uajy.ac.id. Corresponding author* 
2 Department of Informatics, Universitas Atma Jaya Yogyakarta, Jl. Babarsari 44 Sleman 55281, Indonesia, 

joko.santoso@uajy.ac.id 

http://dx.doi.org/10.21163/GT_2023.181.06
mailto:floriberta.binarti@uajy.ac.id
mailto:joko.santoso@uajy.ac.id
https://orcid.org/0000-0002-3688-5635
https://orcid.org/0000-0003-4308-5908


72 

 

of climate change that require urgent attention to lessen the climate change impacts for sustainable 

development (Schneiderbauer et al., 2020).  

Identifying the right indicators for each component of the vulnerability function is an important 

step in the development process of climate change vulnerability assessment methodologies. Many 

studies identified the assessment indicators from the perspective of the disaster impacts of climate 

change (Ludena et al., 2015; Nguyen et al., 2016; Schneiderbauer et al., 2020; UN-Habitat, 2019), 

while only a few did from the potential causes (Delaney et al., 2021). United Nations Habitat manual, 

for example, developed the current disaster risk profile (risk index) to map the most vulnerable areas. 

The indicators for measuring vulnerability are exposure to hazards, ecosystem, socio-economic, and 

infrastructure components (UN-Habitat, 2019). The objective of disaster impact-based assessment 

indicators is to define the degree of adaptive capacity and further propose an effective adaptation 

method to climate change. To achieve the goal of sustainable development, however, climate-resilient 

trajectories should combine adaptation and mitigation (Denton et al., 2014). The goal of mitigation is 

to alleviate the exposure and reduce the vulnerability to climate change (IPCC, 2007). Potential 

causes-based assessment indicators aim to formulate effective mitigation strategies. For mapping the 

climate change vulnerability of aquatic-riparian ecosystems, Delaney et al. (2021) chose some 

exposure indicators classified into hydrology, precipitation, and temperature. Whether disaster 

impact- or potential cause-based indicators, the assessment method should be guided by five 

principles – i.e., simplicity, measurability and availability of data, inclusiveness, comprehensiveness, 

and spatial relevance (Ludena et al., 2015).  

To identify climate change vulnerability at a local scale (a city), an understanding of climate 

change issues at a national scale could help to figure out the major causes. Schneiderbauer et al. (2020) 

showed the urgency of a vulnerability assessment at a national scale before identifying local-specific 

drivers of vulnerability and appropriate adaptation measures. According to the 2020 ND-GAIN 

Country Index, Indonesia is identified as vulnerable to climate change impacts with the rank of 97nd 

out of 181 countries. Indonesia is exposed highly to flooding (ranked 17th most at risk from this 

natural hazard) and tropical cyclones (ranked 23rd). High maximum temperatures with an average 

monthly maximum of around 30.6oC occur regularly (World Bank & ADB, 2021). It was reported 

that a significant proportion of the greenhouse gas (GHG) emissions in Indonesia emanate from land 

use change, which represented 52.3% of total GHG emissions in Indonesia between 2000 to 2017 

(World Bank & ADB, 2021). At the global scale, a review of 116 studies on the role of land use and 

land cover change in climate change vulnerability assessments conducted by (Santos et al., 2021) 

mentioned that 34% of the studies assumed climate change and land use/cover change would act 

addictively, while 66% allowed for interactive effects. Moreover, land use/cover is an environmental 

factor, which is one of the four internal vulnerability factors mentioned by the United Nations (2014)  

(Esperón-Rodríguez et al., 2016), that relevant to reduce the disaster.   

Two questions arise regarding indicators of climate change vulnerability for Surabaya – i.e., (1) 

Does land use/cover determine climate change indicated by the temperature increase? (2) Can land 

cover indicators be used to assess climate change vulnerability? (3) How much does the contribution 

of each land cover index to climate change? Therefore, this study was conducted to answer the 

questions based on the following objectives: 

(1) To examine the impact of land use/cover in Surabaya on climate change; 

(2) To investigate the contribution of each land cover indicator to climate change in Surabaya City; 

(3) To develop a climate change vulnerability map of Surabaya to support decision-makers in 

prioritizing the implementation of climate change mitigation strategies. 

2. STUDY AREA  

The study area is situated in Surabaya City, East Java, Indonesia (Fig. 1). As the second largest 

city in Indonesia, the population in Surabaya increased yearly. According to the Central Bureau of 

Statistics of East Java record, at the beginning of 2019, the registered population was 3,095,026 

people, increasing by about 0.52% from 2010 to 2017 (BPS Jawa Timur, 2018). JICA stated that the 

land in Surabaya is used for agriculture (1.6%), non-irrigation agriculture (0.03%), settlements (39%), 
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ponds (11.4%), water (2.2%), industry (8.5%), green areas and recreation (8.5%), public facilities 

(7.1%), forests, mangrove forests and swamps (5.8%), and commercial areas (4.6%); while the 

remaining (8.3%) are vacant (Savitri et al., 2019). A study using remote sensing data from 1996 to 

2015 revealed the land use change from mangrove forest into pond land. The pond area changed from 

673 ha in 1996 to 3,139.66 ha in 2015 (Savitri et al., 2019). 

There were 23 events consisting of tornadoes, drought, forest and land fires, and floods in 2008-

2017 reported by Surabaya City Disaster Risk Assessment Document for 2019-2023. During this 

period, Surabaya experienced whirlwinds (7 events), drought (2 events), forest and land fires (1 

event), and flooding (Kurniawati et al., 2020). Kurniati & Nitivattananon (2016) stated that the growth 

trend towards East Surabaya raises urban heat island (UHI) – the city experiences much warmer 

temperature than the surrounding rural areas - in Surabaya with a temperature difference of ±1.4oC, 

while Jatayu & Susetyo (2017) mentioned that a 6.62oC rise between 2001 and 2016. According to 

Syafitri et al. (2020), the UHI deviation of ±1.59oC in East Surabaya is correlated with changes in 

land use, building density, and sky view factor. However, Pratiwi & Jaelani (2020) illustrated the 

fluctuation of the surface temperature from the processing of satellite imagery showing that the 

average surface temperature in 2002, 2014, and 2019 was 29.09oC, 26.89oC, and 27.13oC, 

respectively.  

 

 

 

Fig. 1. Location of Surabaya City on the map of South East Asia (source: Google Map). 
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3. DATA AND METHODS 

3.1. Data sources 

The rise of global air/surface temperature change indicates global warming that causes climate 

change. Historical air temperature data can be obtained from weather stations. However, the data has 

low accuracy in reflecting regional temperatures and lack appropriate spatial resolution. Surface 

temperature data sourced from satellite imagery can provide precise information on spatially ground 

surface temperatures (Firozjaei et al., 2018). Moreover, remote sensing provides end-users with a 

consistent, repeatable, and relatively inexpensive methodology for land surface temperature, land 

cover, and vegetation mapping (Azevedo et al., 2016). However, the weakness of satellite images 

compared to climate data from weather stations is their availability on specific dates with an accuracy 

level determined by the cloud cover. In many previous studies, GIS-based software was used to 

classify satellite images to determine the effect of changes and indicators in land use/cover on the 

climate surface temperature of cities (Majeed et al., 2021; Maleki et al., 2020). 

This study used air and surface temperature data from mining climate data from the nearest 

weather stations and processing Landsat 8 OLI/TIRS imagery over 10 years obtained from Earth 

Explorer (https://earthexplorer.usgs.gov/). Satellite imagery is also used to produce maps of land 

cover indicators. Landsat can detect surface temperatures with a higher resolution than other images 

with thermal channels because it is equipped with 60 m and 100 m resolution infrared channels 

(Fawzi, 2017). Furthermore, satellite images of Surabaya City were taken at the latitude of 7.32o S 

and longitude of 112.71o E with a 20 km radius using images with less than 10% cloud cover.  

The land use land cover change (LULCC) analysis provides an overview of the locations and 

areas experiencing land use/cover changes by comparing two satellite images acquired in different 

years. To determine the changes in land use/cover, this study downloaded the MODIS Land Cover 

v.6 satellite image for Surabaya from 2013 to 2021 in Earth Explorer. However, the images can be 

replaced by Landsat 8 OLI/TIRS B4, B5, and B6 images. By using a qGIS feature, LULC analysis 

comparing two images in specific years can show changes in surface temperature. Table 1 presents 

the data sources used in this study. 

 
Table 1.  

Data sources. 

The kind of data Date/year Source/method Usage 

Historical air temperature 

data 
2013-2021 Data mining 

To observe the trend of air 

temperature increases 

Landsat 8 OLI/TIRS 2013-2021 
USGS - Earth Explorer 

https://earthexplorer.usgs.gov/ 

To observe the land cover 

changes 

MODIS Land Cover v.6 2013-2021 
USGS - Earth Explorer 

https://earthexplorer.usgs.gov/ 

To analyze the land use 

land cover change 

 

Only less than ten images of the 33 satellite images of Surabaya City obtained from 2013 to 2021 

can produce maps without cloud cover. Four dates of retrieved satellite imagery were presented to 

illustrate the change in temperature surface and land cover indicators. Table 2 describes the cloud 

cover, time, and sun elevation data collected for satellite imagery. It shows that the four satellite 

images were taken at almost the same hour with little sun elevation. 

                                                                                                Table 2.  

Date, cloud cover, hour, and sun elevation of the satellite images. 

Date Cloud cover Hour  Sun Elevation 

13/08/2013 6.82 02:37:46 54.13 

20/09/2015 3.41 02:35:43 62.35 

28/09/2018 0.83 02:35:28 63.85 

01/10/2019 9.39 02:36:07 64.43 
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3.2. Classification of satellite image data 

We used land cover indicators to observe the land cover change. Yang and Chen (2016) stated 

that green plot ratio, built-up ratio, impervious surface fraction, and surface admittance are land cover 

indicators that can be obtained from satellite image processing. The extraction of Landsat 8 OLI/TIRS 

imagery consisting of nine spectral bands can be used to classify the land cover indicators. Green plot 

ratios can be generated from normalized difference vegetation index (NDVI) maps. Built-up ratios 

can be described by normalized difference built-up index (NDBI) maps. Meanwhile, the impervious 

surface fraction was generated from normalized difference impervious surface index (NDISI) maps. 

Normalized difference water index (NDWI) was used to describe the surface admittance. Values of 

LST and the land cover indicators were calculated using the equation explained in the following sub-

sub sections. Meanwhile, the analysis of LULCC utilized semi-automatic classification in qGIS, an 

open source GIS software (Majeed et al., 2021). Furthermore, maps of the LST and land cover indices 

were classified using the K-Nearest Neighbors (KNN) method. KNN is an ML algorithm widely used 

to classify land cover indicators from satellite imagery (Binarti et al., 2021; Ge et al., 2020; Jiang et 

al., 2020). 

3.2.1. Land Surface Temperature (LST) 

LST maps (in o C) were obtained by rasterizing satellite images and clustering using Eq. (1)–(5) 

(Jeevalakshmi et al., 2017). 

𝐿𝑆𝑇 =
𝐵𝑇

{1+λ∗(𝐵𝑇𝑝 )∗𝑙𝑛(𝐿𝑆𝐸)}
   [oC]                                      (1) 

𝐵𝑇 =
𝐾2

ln⁡(
𝐾1

𝐿
+1)

− 272.15   [oC]                                      (2) 

𝐿𝑆𝐸 = (0.004 ∗ 𝑃𝑣) + 0.986                                      (3) 

𝑃𝑣 = {
(𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛)

𝑁𝐷𝑉𝐼𝑚𝑎𝑥 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛⁄ }
2

                                      (4) 

𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅−𝑅𝐸𝐷)

(𝑁𝐼𝑅+𝑅𝐸𝐷)
                                      (5) 

where:  

BT  -brightness temperature;  

λ -average wavelength of band 10; 

p   -the multiplying of Planck’s constant by Boltzmann constant and velocity of light (14380); 

K1 and K2 -band-specific thermal conversion constant;  

L  -spectral radiance;  

LSE -land surface emissivity; 

Pv   -the proportion of vegetation; 

NDVI -normalized difference vegetation index; 

NIR -near-infrared band; 

RED -red band 

3.2.2. Normalized Difference Built-up Index (NDBI) 

NDBI in satellite imagery is the ratio map of the built-up to the total area. Xu et al. (2018) 

developed Eq. (6) using NIR and short-wavelength infrared band (SWIR) as variables. 

  

𝑁𝐷𝐵𝐼 =
(𝑆𝑊𝐼𝑅−𝑁𝐼𝑅)

(𝑆𝑊𝐼𝑅+𝑁𝐼𝑅)
                                      (6) 
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3.2.3. Normalized Difference Imperviousness Surface Index (NDISI) 

Xu (2010) developed Eq. (7) to determine the relationship between the thermal band (TIR), the 

near-infrared band (NIR), the middle infrared band (MIR), and the visible band (VIS) on impervious 

surfaces based on satellite imagery.  

𝑁𝐷𝐼𝑆𝐼 =
{𝑇𝐼𝑅−

1

3
∗(𝑉𝐼𝑆+𝑁𝐼𝑅+𝑀𝐼𝑅)}

{𝑇𝐼𝑅+
1

3
∗(𝑉𝐼𝑆+𝑁𝐼𝑅+𝑀𝐼𝑅)}

                                      (7) 

3.2.4. Normalized Difference Vegetation Index (NDVI) 

Towers et al. (2019) tested NDVI's ability to estimate spatial variability and found that it is more 

accurate than other vegetation indices. The NDVI value is extracted using Eq. (5). 

3.2.5. Normalized Difference Water Index (NDWI) 

NDWI estimates water bodies' area, depth, and turbidity (Mcfeeters, 2007). Meanwhile, Eq. (8) 

is a modification of the basic formula sensitive to changes in the water content in the leaves (Gao, 

1996). 

𝑁𝐷𝑊𝐼 =
(𝑁𝐼𝑅−𝑆𝑊𝐼𝑅)

(𝑁𝐼𝑅+𝑆𝑊𝐼𝑅)
                                      (8) 

NDWI=(NIR-SWIR)/(NIR+SWIR)  

Where SWIR is the short wavelength infrared band (1.24 μm) value. 

3.3. Accuracy assessment 

Since surface temperature is the most important variable in identifying the spatial climate change 

vulnerability index based on land cover indicators, we compared the surface temperature of three 

points measured using infra-red camera FLIR i5 to the surface temperature of the same locations at 

the same time resulted from satellite image processing. The infra-red camera FLIR i5 has a thermal 

sensitivity of less than 0.1oC and the capability to measure temperatures ranging from -20°C to 250°C 

with a resolution of 0.1°C. Since there is only one package of satellite image data, which is free of 

cloud and available during climate monitoring (from August 12 to September 12, 2022), we compared 

the measured surface temperatures to the ones on the LST map on August 12, 2022, 02:48:18. 

3.4. Data analysis 

Multivariate regression analysis with a 95% confidence level was used to analyze the effect or 

contribution of each land cover index - i.e., NDBI, NDISI, NDVI, and NDWI - as independent 

variables and the surface temperature (LST) as the dependent variable. The reliability and validity of 

the variables were determined by the coefficient (R-squared) and the p-value. R-squared describes the 

percentage of the response variable. When the p-value is less than the significance level (0.05), the 

sample data provide sufficient evidence to reject the null hypothesis for the entire population 

(Andrade, 2019). Furthermore, Beta Coefficient was used to describe the effect strength of each 

independent variable on the dependent. 

4. RESULTS  

4.1. Accuracy of land surface temperature calculations. 

Table 3 describes the comparison between measured surface temperatures and surface 

temperatures in the LST map on August 12, 2022, 02:48:18. The surface temperature differences of 

points 1, 2, and 3 are only 0.54%, 0.03%, and 0.15% respectively. 
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                                                                                                                           Table 3.  

Results of the accuracy assessment of LST calculations. 

Point Geographical location 

Surface temperature 

Measured 

(oC) 

Satellite image 

(oC) 

Difference 

(oC) 

1 7o46’01”S & 110o24’24”E 33.6 33.42 0.18 

2 7o46’52”S & 110o25’24”E 33.0 32.99 0.01 

3 7o46’56”S & 110o23’30”E 33.3 33.25 0.05 

4.2. Temperature increases and the land cover profile 

The temperature increases are described by the air temperature trend (Fig. 2) and LST maps (Fig. 

3). Fig. 2 illustrates the trend of increasing the maximum, average, and minimum air temperature 

obtained from mining nine-year climate data for Surabaya from 2013 to 2021. Despite the 

insignificant increases, the average air temperature rose from less than 27oC to slightly more than 

27oC. The air temperature trends show that the greatest increase sequentially was experienced by the 

maximum air temperatures. The maximum air temperature in 2013 was less than 31oC and in 2021 

reached almost 32oC.  

 
Fig. 2. Trend of temperature increases in Surabaya in 2013-2021. 

 

The LST map was also used to observe climate change on four representative dates from 2013 to 

2019, namely 08/13/2013, 20/09/2015, 28/09/2018, and 01/10/2019. Fig. 3 illustrates the minimum 

and average increase in surface temperature in 2015 from 29.19oC to 29.41oC and 32.79oC to 32.86oC, 

respectively. In 2018 the minimum and average surface temperatures decreased to 29.28oC and 

32.41oC, respectively. However, in 2019, the minimum and average surface temperatures were 

29.71oC and 33.05oC. Although the maximum surface temperature increased in 2018 and 2019, the 

maximum surface temperature in 2019 at 36.50oC was lower than in 2013 (i.e., 36.75oC). The 

illustration of the surface temperature fluctuation confirms the results of the study by Pratiwi & Jaelani 

(2020). Maps of land cover indicators in Fig. 3 show remarkable changes in the water index (NDWI). 

From 2013 to 2019, the maximum, average, and minimum water index experienced a gradual decrease 

from -0.43 to -1.07, 0.06 to -0.11, and 0.77 to 0.51, respectively. A significant increase appears in the 

maximum value of the built-up index (NDBI) – i.e., from 0.77 in 2013 to 0.84 in 2019. The vegetation 

index (NDVI) decreased in the minimum and maximum values. However, the average water index 

increased from 0.15 in 2013 to 0.25 in 2019. A significant increase in the impervious surface index 

(NDISI) only occurred in the maximum value from 0.71 in 2013 to 0.80 in 2019. The average value 

increased insignificantly from 0.62 in 2013 to 0.63 in 2019. 
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4.3. Land use land cover change (LULCC) 

Fig. 4 presents two comparisons between two land cover/use images in 2013 (the duration 

beginning) and 2015 (the first surface temperature increase) and between two land cover/use images 

in 2015 and 2019 (the last surface temperature increase). The map of LULCC in 2013 and 2015 shows 

that the built area dominates Surabaya by 41.3%. Conversely, the map of LULCC in 2015 and 2019 

was dominated by changes in agricultural land to the built-up areas by 32.6%. However, the 

percentage of the total built-up area between 2015 and 2019 was 64%, which is the cumulative of the 

built-up area without change (26.6%), change of water body (3.3%), green area (1.5%), and 

agricultural land. The percentage of built-up area in 2019 was much larger than in 2015 (43.3%). The 

most significant land use change between 2013 and 2015 was from green areas to agricultural land 

(8.6%), followed by changes from built-up areas to agricultural land (8.2%).  

 
Fig. 4. The land use/land cover change histogram of Surabaya City. 

 

Changes from water body to other functions, which covered 10% of the total area in 2019 and 

16% of the total area including the reduction of the water body area from 2015 to 2019, appeared 

dominantly in Fig. 5. The land use changes are detected in the north, northwest, and southeast areas 

of Surabaya. These maps also depict the change/reduction of vegetation and agriculture to the built-

up area found in the southwest and southeast of the study area. This change/reduction consumed 37% 

of the total area. The increase in a built-up area is only 1% of the total area. Positive land use change 

(from built-up into vegetation area) only occurred in 2013-2015, which is only 0.44% of the total 

area. Although some areas in 2015-2019 experienced a change from water bodies into 

agriculture/vegetation areas prominently as shown in Fig. 5 (right), however, the areas displayed in 

the 01/10/2019 NDWI map in Fig. 3 still have high water index values.   

 
Fig. 5. The land use/land cover change map of Surabaya City: 2013 – 2015 (left) and 2015 – 2019 (right). 
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4.4. Contribution of each land cover index 

The multivariate regression analysis of the contribution of each land cover indicator to land 

surface temperature was conducted in the latest satellite image data aiming to determine high-level 

vulnerability areas for the current implementation of climate change mitigations. The results of 

multivariate regression of five satellite image dates show that satellite imagery of October 1, 2019, 

has the highest R-squared, as shown in Table 4. The R-squared of 0.85 is considered high, which 

explains that the four land cover indicators on October 1, 2019, affected 85% of surface temperature. 

Therefore, the contribution weights of four land cover indices were used to develop a climate change 

vulnerability map. Less than 0.05 of the p-value for all variables indicates that the four land cover 

indicators determine the surface temperature. Based on the Beta Coefficient of each land cover index, 

it can be concluded that NDISI has the largest contribution, followed by NDWI and NDVI. This order 

of contributions also applies to the other four satellite images of the dates.  

 
                                                                                                                                                                  Table 4.  

Coefficient of determination (R-squared) and P-value. 

Date 
R-

squared 

β coefficient P-value 

NDBI NDISI NDVI NDWI   NDBI NDISI NDVI NDWI 

June 26, 2018 0.78 0.19 14.93 -1.40 -1.51 0.00 0.00 0.00 0.00 

June 11, 2019 0.81 0.00 17.12 -1.57 -3.26 0.00 0.00 0.00 0.00 

July 29, 2019 0.76 0.76 10.48 -3.04 -3.38 0.00 0.00 0.00 0.00 

October 01, 2019 0.85 1.13 9.83 -5.33 -5.69 0.00 0.00 0.00 0.00 

 

4.5. Climate change vulnerability map 

Based on the contribution weights from the multivariate regression analysis of satellite imagery 

data obtained on October 1, 2019, we developed the climate change vulnerability (see Fig. 6) using 

an equation derived from the contribution weights – i.e., Vulnerability Level = (9.83*NDISI) - 

(5.69*NDWI) - (5.33*NDVI) + (0.85*NDBI) – in Table 4. The orange and red areas indicate a high-

level of vulnerability to climate change. The red areas randomly scattered in the southwest, west, 

north, east, and southeast must be prioritized firstly for climate change mitigation. 

 

 

Fig. 6. The climate change vulnerability map of Surabaya City. 
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5. DISCUSSION  

The increase in air and surface temperature during the last nine years indicates climate change in 

Surabaya. Approximately 1oC of the increase in average air temperature in Surabaya already exceeds 

the recently observed global warming trends of 0.2oC per decade (IPCC, 2019). Moreover, any 

increase in global temperature (+0.5oC) was projected to affect human health negatively and heat-

related morbidity and mortality (Hoegh-Guldberg et al., 2018).  

The trend of air temperature increase in Fig. 2 corresponds to the gradual reduction in minimum, 

average, and maximum values of the water index and the increase in the maximum value of the built-

up index. The similar pattern of the water index, built-up index, and surface temperature in Fig. 3 

confirms the effect of water index reduction on the (surface) temperature. The highest surface 

temperature areas located in the center and southern Surabaya are related to the areas with the lowest 

water index and highest built-up index. An increase in surface temperature can be observed in the east 

area of Surabaya adjacent to ponds and swamps from 2013 to 2015. Changes from non-built areas 

(such as water bodies) to built-up areas in the eastern part also appeared on the NDBI and NDWI 

maps in 2013-2015. The change from a green to a built-up area emerged in the southwest area on the 

NDBI and NDVI maps. However, the change in surface temperature on the southwest side did not 

appear prominently on LST maps 

Fig. 3 and Fig. 5 demonstrated that changes in the maximum surface temperature are related to 

land use changes. The increase in maximum values of the built-up index was in line with the 

dominance of built-up areas without changes in Fig. 4. Fig. 5 (left) shows those changing from other 

land use in 2013-2015 located in the city's center, north and south sides of Surabaya. In 2015-2019, 

however, the development of built-up areas appeared towards the northwest and east shown in Fig. 5 

(right). The percentage of the total area that has changed from a built-up to agricultural land (0.65%), 

agricultural land to a green area (5.8%), built-up area to a green area (5.2%), and agricultural area to 

a water body (4.5%). This is in line with the decrease in maximum surface temperature in 2013 and 

2015 as shown in Fig. 4. Surabaya's urban park development program is one of the causes of this 

positive change in land use and cover. Setiawati et al. (2021) reported that from 1995 to 2016 the bare 

land in the southwestern and central part of Surabaya was converted into green parks. Furthermore, 

the increase in minimum, average, and maximum surface temperatures in 2015 and 2019 is in line 

with the percentage of land use change into built-up areas (64%) supported by changes in water bodies 

and green areas to agricultural land at 6.5% and 4.9%, respectively. The change in water bodies into 

agricultural land obviously can be observed in eastern Surabaya. 

Although the impervious surface index contributed most to land surface temperature, the NDISI 

and LST maps did not reveal similar patterns. Maps of NDWI and NDBI that own similar patterns 

with LST maps became the second and fourth contributors. However, when the contribution weights 

were applied to the vulnerability map, the pattern of vulnerability level corresponded to the pattern of 

the water index values in NDWI maps. Areas with high water index values are the least vulnerable, 

and vice versa. The study on the relationship between water index and surface temperature on various 

land surfaces in India (Guha & Govil, 2021) also describes the strong correlation between water index 

and surface temperature, especially during the post-monsoon season.  

Since the correlation between surface temperature and land cover indices could change following 

the season (Guha & Govil, 2021), future studies on the seasonal impact of land cover indices on the 

surface temperature would corroborate the contribution weights and develop a more reliable climate 

change vulnerability map. To use satellite images acquired in every season, more images with higher 

cloud cover should be included. Consequently, cloud removal in the preprocessing step must be done 

to lower the risk of loss of information leading to a spatiotemporal discontinuity that degrades the 

quality and usefulness of satellite images (Hasan et al., 2022).  
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6. CONCLUSIONS 

As one of the cities on the northern coast of Java has a risk of sinking by 2050, Surabaya needs 

an urgent formulation of climate change adaptation and mitigations. Moreover, an increase in air 

temperature, as shown by nine-year historical climate data, confirms the occurrence of global 

warming as an indication of climate change. Since land use/cover change became the significant cause 

of climate change in Indonesia, land cover indicators can be used as the base for identifying climate 

change vulnerability. Some findings regarding the trend of air temperature increase, land surface 

temperature (LST), and four land cover indicators – i.e., built-up index (NDBI), impervious surface 

index (NDISI), vegetation index (NDVI), and water index (NDWI) – describe the specific 

characteristic of land use/cover in Surabaya and the impact of land cover on the increase in air and 

surface temperature. The trend of air temperature increases is in line with the values of the water and 

built-up index, which are presented in the NDWI and NDBI maps, respectively.  

The LULCC maps illustrate the change of water areas mainly to agriculture and built-up areas. 

However, the multivariate regression analysis results explained the significant contribution of land 

cover indicators to the surface temperature. Sequentially, land cover indicators that contribute to the 

surface temperature of Surabaya are the index of surface imperviousness (NDISI), water body/content 

(NDWI), vegetation (NDVI), and built-up (NDBI). The climate change vulnerability map of Surabaya 

City developed based on the contribution weight shows the pattern of vulnerability levels 

corresponding to the water index values in NDWI maps. Future studies on the projected climate 

change vulnerability map by 2050 will be needed to achieve global warming of less than 1.5oC. 
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