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ABSTRACT: 

Wind shear is one of the dangerous meteorological phenomena for aviation. This phenomenon is 

significant, especially at the lower level. The duration of wind shear events varies greatly, ranging from 

short to long. The best way to avoid accidents caused by wind shear is by predicting the event and the 

duration. Recent studies use Machine Learning (ML) as a nonlinear geostatistical method to predict 

wind shear utilizing wind observing instruments data. The data is conditioned into temporal data which 

is fed to the ML model. However, the ML model used is not a temporal ML model for time-series data 

but a generic model for a common type of data. Many studies claimed temporal models are better than 

generic ones to tackle temporal data. In this study, we propose Temporal Convolutional Network 

(TCN) to predict incoming wind shear duration and occurrence using an anemometer sensor network 

i.e., Low-level Wind Shear Alert System (LLWAS). The wind shear occurrence is derived from wind 

shear duration prediction. The proposed model is compared with other temporal models, i.e., Long-

Short Term Memory (LSTM) and Gated Recurrent Unit (GRU). Different schemes of total predictor 

were tested to find the best predictor scheme for wind shear prediction. To measure the performance 

of all models in all schemes, accuracy, False Alarm Ratio (FAR), Probability of Detection (POD), and 

Root Mean Squared Error (RMSE) metrics are used. The result is TCN dominating almost in all metrics 

used i.e., Accuracy, FAR, and RMSE for all schemes against LSTM and GRU. Scheme with 4 

predictors proved to bring the best performance of all models for wind shear duration prediction. The 

result proves TCN is the best temporal model for wind shear forecasting using LLWAS. For better 

wind shear duration prediction, the best scheme choice is the 4-predictor scheme. 
 

Key-words: Wind shear, Aviation, Machine learning, Geostatistical, Temporal Convolutional 

Network. 

1. INTRODUCTION 

Among the cause of aircraft accidents by meteorological phenomena, wind shear is the dominant 

factor (Huang, 2020). Its unpredictable nature makes an aircraft deviate from its track. By the 

direction, wind shear is distinguishable into 2 types, i.e., horizontal, and vertical wind shear. Harmful 

wind disturbances such as downbursts and microbursts are the kind of horizontal wind shear-type 

when they hit the ground (International Civil Aviation Organization, 2005). 

Some instruments have already been developed to detect such phenomena as wind shear, 

especially horizontal wind shear i.e., Low-level Wind Shear Alert System (LLWAS) (International 

Civil Aviation Organization, 2005). The LLWAS consists of a network of anemometers distributed 

around the runway. Using the network any wind divergence that occurs in the runway area captured 

by LLWAS is an indicator of wind shear occurrence.  

Other instruments i.e., Lidar Doppler and Terminal Doppler Weather Radar (TDWR) developed 

to detect wind shear is remote sensing-based tool (Chen et al., 2017; Chun et al., 2017; International 
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Civil Aviation Organization, 2005; Nechaj et al., 2019; Shun and Chan, 2008; Thobois et al., 2019). 

Those Remote sensing instruments can detect wind shear at any height unlike LLWAS, but they are 

susceptible to the weather condition. Lidar Doppler is good in fine weather but bad at rainy weather 

in contrast with TDWR. On the other hand, LLWAS can work well in any weather condition 

(International Civil Aviation Organization, 2005). Furthermore, LLWAS can detect wind shear faster 

because have a faster measurement cycle. 

For the pilot to better avoid the wind shear area, information on the potential wind shear area 

must be obtained by the pilot before the wind shear occurs. Therefore, wind shear prediction is a must. 

Recent research regarding wind shear prediction is dominated by numerical and Geostatistical 

methods. Geostatistical method used for wind shear prediction dominated by Machine Learning (ML) 

(Bolgiani et al., 2020; Chan and Hon, 2016; Hou and Wang, 2019; Kwong et al., 2012; Lee et al., 

2020; Liu et al., 2012; Wong et al., 2008; Yan et al., 2020). Previous studies suggest numerical 

methods tend to have longer lead time but need massive computation power and the ML method 

doesn't need extensive computing resources and produces faster prediction but a shorter lead time. 

Possessing a shorter lead time is not a problem if the system can produce a swift forecast nevertheless 

but not everyone has a sizeable computation power. 

Prior research about wind shear prediction using ML, the source data used is from wind shear's 

instrument detection system. Mostly use Lidar Doppler as a data source for the ML model (Kwong et 

al., 2008; Liu et al., 2012; Wong et al., 2008). Other studies used an anemometer and LLWAS (Liu 

et al., 2012; Ryan et al., 2021). Lidar Doppler as a data source of the ML model will have the same 

cons which can’t predict wind shear in rainy conditions (Gultepe et al., 2019). An anemometer can 

only forecast in a narrow area. On the other hand, LLWAS can do a forecast in any weather condition 

and cover the entire runway area (Ryan et al., 2021). 

Wind shear occurs with varying duration. Wind shear happens in a matter of seconds, minutes, 

or hours (International Civil Aviation Organization, 2005). Prior studies using ML to predict wind 

shear only have a limited time frame prediction so it can't handle all possible wind shear. 

This paper proposes a new approach to predict wind shear using a Temporal Convolutional 

Network (TCN) as an ML model and LLWAS in Soekarno-Hatta airport as the data source. TCN is 

used to forecast the duration of incoming wind shear. Ryan et al (2021) suggest TCN exceeds the 

generic ML model for wind shear prediction i.e. Multi-layer Perceptron (MLP). Nevertheless, the 

model has not been compared against another time-series model. This paper will compare TCN 

against Long-short Term Memory (LSTM) and Gated Recurrent Unit (GRU). Another difference is 

the model will do a regression task to predict the duration of incoming wind shear instead of a 

classification task. When the duration's prediction is below the threshold, it's treated as "no wind 

shear" conversely "wind shear occurrence". Using this approach, the model can predict multiple tasks 

without using multiple models which is an efficient approach compared with previous studies. 

2. STUDY AREA  

Soekarno-Hatta airport is in Tangerang, Indonesia at 6o 7' 32.0016” latitude South and 106o 39’ 

20.9880” longitude East. The airport has 2 runway zones and 12 LLWAS anemometers are 

surrounding them as shown in Fig. 1. The blue star icon in Fig. 1 is an anemometer and 2 red lines 

are runway zones. A runway zone is an area that aircraft will approach or use for landing and takeoff 

necessities. Thus, runway zone not only includes the runway itself but along its way needed for 

landing and takeoff. LLWAS Wind shear warning data is derived from wind speed and direction data 

through a divergence analysis algorithm (Wilson, 1991). The analysis of the divergence area is 

conducted by involving a combination of 3 sensors from 12 existing sensors and comparing their wind 

measurement. Those 3 sensors represent the zone surrounded by them. 

When a particular area has a divergence value that surpasses the threshold, LLWAS will treat the 

area as a wind shear zone. Since there are 2 runways in Soekarno-Hatta airport, LLWAS divides the 

runway area into 4 parts for each end of the existing runway. 
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Fig. 1. LLWAS anemometer placement at Soekarno-Hatta airport. 
 

The name of the runway area is presented in Table 1. Wind shear events detected by LLWAS 

can be in 1 area or more overlap with the other 3 areas. The Detection cycle of LLWAS is done every 

10 seconds. 
                                                                                               Table 1.  

All runway zone name in Soekarno-Hatta airport. 

Runway zone name 
Tip Coordinate 

Latitude Longitude 

07L 6o 8' 2.3" S 106 o 36' 10.1" E 

25R 6 o 5' 45.6" S 106 o 42' 2.6" E 

07R 6 o 9' 19.3" S 106 o 36' 37.4" E 

25L 6 o 6' 59.3" S 106 o 42' 30.8" E 

3. DATA AND METHODS 

3.1. Low-level Wind Shear Alert System (LLWAS) data 

LLWAS data consist of wind speed and direction data and wind shear warning data. Wind speed 

and direction data become predictors meanwhile wind shear data is the predictand. The data period 

used for the experiment is from February 1 to April 18, 2020. The total dataset from the period is 

2661128. Wind shear warning labeled data content made up only 0.042% and the rest is no wind shear 

warning data. Under-sampling was applied to manage this unbalance dataset. All "wind shear 

warning" labeled data is included in the dataset and "no wind shear warning" labeled data is chosen 

randomly from the whole dataset as much as wind shear warning data total. Data quality is also 

checked, any datum with typing error or empty discarded. After quality control and under-sampling, 

the total dataset used for each scheme is listed in Table 2. 
                                                                                     Table 2.  

Total each label in the dataset for every experiment scheme. 

Scheme 
Wind Shear 

Occurrence 

No Wind Shear 

4 Predictors 915 955 

6 Predictors  675 715 

12 Predictors 352 392 
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3.2. Temporal Convolutional Network (TCN)  

 TCN is a one-dimensional Convolutional-based neural network model for temporal data (Lea et 

al., 2016). Besides the dimension, TCN has an additional property called dilation (𝑑) which depend 

on dilation rate (𝑟) as in (1). The dilation value will expand the more the TCN layer (l) increase. 

𝑑 =  𝑟𝑙       (1) 

 How dilation affects processing data in TCN is shown in Fig. 2. In most cases, dilation is set 

to 2 (Hewage et al., 2020; Yan et al., 2020). Dilation is a gap among data treated by a TCN filter in a 

layer.  

 

Fig. 2. TCN with dilation rate set as 2. 

 Another difference between TCN and ordinary Convolutional Neural Network (CNN) is the 

layer-to-layer processing data as shown in Fig. 3. There is no Max/Average Pooling after the 

activation function (Hewage et al., 2020; Yan et al., 2020). To avoid vanishing or exploding gradients 

due to deep layers, layer to layer processing data in TCN employ Residual Network (ResNet) (Tai et 

al., 2017). That is one extra process after filtering and activation function. Normally, TCN using 

Rectifier Linear Unit (ReLU) as an activation function (Abueidda et al., 2021; Hewage et al., 2020; 

Ryan et al., 2021). 

Fig. 3. Data processing block in TCN using ResNet for this study. 
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3.3. Long-Short Term Memory (LSTM) 

 LSTM is a popular Recurrent Neural Network (RNN) variant model that specializes in the time 

series model. An RNN has a loopback block computation that uses input data and output from the 

previous loop of the block. A vanilla RNN can’t handle too long time series data because it can trigger 

a vanishing gradient (Fei and Tan, 2018). To patch this problem, a new variant of RNN with additional 

operation from base RNN was invented i.e., LSTM (Zhao et al., 2018). The extra operation in LSTM 

is represented in forget gate (f),input gate (i),memory gate (g) and output gate (o) as shown in Fig. 4. 

 

Fig. 4. LSTM architecture. 

Forget gate is used to decide which part of the input to ignored, the input and memory gate 

determine which part to update, and the output gate computes the output LSTM block (Sadique and 

Sengupta, 2021). LSTM block will output 2 values i.e., cell state (c) and the real output (o) which will 

become for the next loop. 

3.4. Gated Recurrent Unit (GRU) 

 GRU is another popular RNN besides LSTM. GRU has the same gate as LSTM except it doesn’t 

have an output gate (Sadique and Sengupta, 2021). Similar to LSTM, GRU is immune to the vanishing 

gradient. Because of the lack of output gate, GRU has fewer trainable weights and biases. Thus, GRU 

is slightly more lightweight to run than LSTM. 

3.5. Experiment Scheme 

 In this study, TCN will be used to do a regression task to forecast incoming wind shear duration. 

Wind speed and direction data from LLWAS transformed to west-east (𝑈) and south-north (𝑉) 

components. Furthermore, 𝑈 and 𝑉 data packed to become time-series data for every anemometer in 

LLWAS. The length of the time-series data tested in this study is 10 minutes. LLWAS has 10 seconds 

resolution data consequently time-series data length used is 60. 

 Wind shear duration (𝜔𝑑) data were obtained by using wind shear warning data. The number of 

consecutive warning times (𝜔𝑐) by LLWAS times resolution (2). 

𝜔𝑑 = 𝜔𝑐 × 10      (2) 

The minimum consecutive is 1, so the minimum duration value is 10. This minimum value is set as 

the TCN threshold to predict the presence or absence of wind shear shortly. The data processing to 

produce a prediction for wind shear duration and wind shear event is summarised in Fig. 5. The model 

used for the processing is TCN, LSTM, and GRU alternately. 
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Fig. 5. Flowchart for data processing to produce wind shear prediction. 

 

 Four areas monitored by LLWAS also become forecast zone for TCN. In this study, 4, 6, and 

12 anemometers were tested as the predictor to do a wind shear forecast for each area. Selected 

anemometers for every region in every scheme with 4 and 6 predictors are shown in Table 3. Twelve 

anemometers scheme predict every area using all anemometers. The selection is based on the nearest 

anemometers to the forecast area. The nearest sensor is the best data source to know the condition in 

a particular region (Gutierrez-Corea et al., 2016). 
                                                                                                                            Table 3.  

Predictor for every runway area in scheme 4 and 6 predictors. 

Anemometer 

Scheme 

4 Predictors 6 Predictors 

07L 25R 07R 25L 07L 25R 07R 25L 

#1  ✓        ✓       

#2  ✓    ✓    ✓    ✓   

#3        ✓    ✓    ✓ 

#4  ✓  ✓      ✓  ✓     

#5        ✓    ✓    ✓ 

#6      ✓  ✓      ✓  ✓ 

#7    ✓        ✓    ✓ 

#8      ✓        ✓   

#9    ✓        ✓    ✓ 

#10  ✓        ✓    ✓   

#11    ✓    ✓  ✓  ✓  ✓  ✓ 

#12      ✓    ✓    ✓   

 

 To benchmark the TCN's performance, LSTM and GRU will be the criterion model. All 

Hyperparameter configurations for those 3 models used for the experiment are listed in Table 4. These 

configurations were founded after trial and error which means to produce the best performance. LSTM 

and GRU will also have a similar threshold prediction as TCN and the same predictor set. 
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                                                                                   Table 4.  

Hyperparameter configuration used for experiment. 

Hyperparameter 
Model 

TCN GRU LSTM 

Layers 12 1 Stack 1 Stack 

Filter Size 10 - - 

Neurons 15 15 15 

Mini Batch Size 20 20 20 

Epoch 100 100 100 

Learning algorithm Adam Adam Adam 

3.6. Validation metric 

 Cross-validation 5-fold is used to measure all models' skills regardless of the scheme used. Thus, 

the dataset is split into 5 groups. Four groups will become the training dataset and the rest is the 

validation dataset. All groups alternately become validation datasets. Therefore there will be 5 times 

looping processes from training to validation  Models performance is measured using Root Mean 

Squared Error (RMSE) for wind shear duration and contingency table as shown in Table 5. Ground 

truth is obtained from cross-validation which is predictand of validation data. Furthermore, prediction 

value is a prediction obtained by using validation predictors data as an input model. Contigency table 

metric then derived to get accuracy (𝑎𝑐𝑐), Probability of Detection (POD) and False Alarm Ratio 

(FAR) given in (3-5) (Thobois et al., 2019). Since the performance was measured using cross-

validation 5-fold, at the end of the experiment there will be 5 RMSE and contingency table derived 

metric values. The average of all metric values is calculated to summarize them. 
 

                                                                                     Table 5.  

Contingency table product. 

  
Prediction Value 

Right Wrong 

Ground 

Truth 

Right Hit (H) Miss (M) 

Wrong 
False Alarm 

(FA) 

Correct 

Negative 

(CN) 

 

𝑎𝑐𝑐 =  
𝐻+𝐶𝑁

𝐻+𝐶𝑁+𝑀+𝐹𝐴
     (3) 

𝑃𝑂𝐷 =  
𝐻

𝐻+𝑀
      (4) 

𝐹𝐴𝑅 =  
𝐹𝐴

𝐹𝐴+𝐶𝑁
      (5) 

𝑅𝑀𝑆𝐸 =  √∑
(𝑑̅𝑟−𝑑𝑟)2

𝑛

𝑛
𝑖=1       (6) 

where: 

𝑎𝑐𝑐 =  𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦      

𝑃𝑂𝐷 =  Probability of Detection        

𝐹𝐴𝑅 =  False Alarm Ratio        

𝑅𝑀𝑆𝐸 =  Root Mean Squared Error       
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4. RESULTS 

The output of this intelligent system is presented in a web display application as shown in Fig. 6 

and 7. Fig. 6 is a display condition when the model predicts wind shear duration below 10 seconds 

for all runways zones. Therefore, the model predicts that is there is no incoming wind shear for all 

runway zones. Fig. 7 shows the display when there is wind shear in several runway zones. The display 

shows the wind shear duration estimation when the model predicts incoming wind shear in that 

runway zone.   

 

 

Fig. 6. Display condition when there is no wind shear incoming predicted. 

 

 

Fig. 7. Display condition when there is a wind shear predicted in several runway zones. 

 

The TCN, LSTM, and GRU mean error convergence can be seen in Fig. 8. All models show the 

error decreased rapidly at the beginning phase of training and converged at some point. All models 

look converged after epoch 20. GRU looks converged a little late compared with TCN and LSTM. 

The validation error pattern for all models looks similar to training errors which means the training 

dataset has an alike pattern with training data. Overall, error in train and test data set for all models 

are very close which mean they can learn well. 
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Fig. 8. Error convergence of all models. 

 

All models' performance for all schemes is listed in Table 6. In the 4 predictors scheme, TCN 

has the best score in all metrics. Thus, TCN has the best performance for predicting wind shear 

duration and occurrence in the 4 predictors scheme. The second-best model is LSTM which all metrics 

show superiority over GRU.  
                                                                                                                Table 6.  

All models’ performance. 

Model Scheme 
Average 

Accuracy FAR POD RMSE 

GRU 

4 predictors 0.857 0.202 0.933 22.874 

6 predictors 0.888 0.148 0.933 25.597 

12 predictors 0.860 0.201 0,962 78.718 

LSTM 

4 predictors 0.903 0.122 0.936 21.912 

6 predictors 0.899 0.139 0.944 36.549 

12 predictors 0.918 0.118 0.971 68.780 

TCN 

4 predictors 0.925 0.088 0.942 17.534 

6 predictors 0.920 0.104 0.948 20.611 

12 predictors 0.918 0.083 0.919 81.723 

 

TCN still becomes the best model in the 6 predictors scheme. All metrics show TCN excellence 

over any other models in the scheme. TCN metrics in this scheme are not much different from TCN 

in the 4 predictors scheme. In this scheme, LSTM becomes the second-best model for predicting wind 

shear occurrence for having better average accuracy, FAR, and POD. Nevertheless, GRU exceeds 

LSTM regarding wind shear duration with a big margin in the average RMSE. 

For the 12 predictors scheme, LSTM is the best performance model. LSTM and TCN have same 

average accuracy. LSTM average POD in this case is the biggest in all schemes against any model.  
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In contrast with other scheme, TCN here has the biggest average RMSE which means the worst for 

predicting wind shear duration. 

The best model in average accuracy and RMSE is TCN in 4 predictors scheme. For FAR metric, 

the best model with the lowest average FAR is TCN using 12 predictors. That average FAR value is 

nearly same with TCN in the 4 predictors scheme which is the second-best model in average FAR 

metric. Their average FAR difference is subtle (only 0.005). In the average POD metric, the best 

model is LSTM using 12 predictors. 

5. DISCUSSION  

The metrics value in Table 6 shows TCN superiority over criterion. From 4 metrics, TCN reign 

in 3 metrics as the best model. The superiority of TCN over other time-series models match fed with 

prior studies (Hewage et al., 2020; Yan et al., 2020; Zhu et al., 2020). Different from previous studies, 

this study proves TCN can outmatch classification tasks derived from regression values. TCN can 

detect incoming wind shear well in all schemes (POD > 0.9) with minimum false alarm (FAR >= 0.1) 

against other models. 

The TCN performance for predicting incoming wind shear looks not significantly affected by 

total predictors. This also applies to criterion models. There is no significant difference in the average 

accuracy, POD, and FAR for the same model with a different scheme. However, in predicting wind 

shear duration, the different scheme brings significantly different average RMSE value. TCN with 4 

and 6 predictors do not have a significantly different average RMSE but have a great difference with 

12 predictors. This also applies with GRU, which is the difference average RMSE value between 4 

and 6 predictors scheme is 2.723 but against 12 predictors scheme, the difference is 55.784. This is 

different with LSTM where all schemes have a significant difference in average RMSE (>5). 

However, the experiment shows the fact that the 12 predictors scheme has the biggest average RMSE 

for all models. 

The increase in the number of predictors must be accompanied by an increase in the dataset. 

Nonetheless, the scheme with the largest total predictor in this experiment has the lowest total dataset. 

This causes the model can't learn well the general pattern of the dataset. For a regression model, the 

effect is an increase in RMSE value. Wind shear duration is a product of the regression model, that 

why the average RMSE value for 12 predictors is huge compared with another scheme. For wind 

shear duration prediction, the best scheme is the 4 predictors scheme which is has a biggest total 

dataset. This finding underlines the importance of the total dataset over the model used for wind shear 

duration prediction. 

Overall, the experiment show TCN outperforms all criterion models slightly for this case. The 

criterion models have high performance because they are specializing in time series problems. 

Therefore, the difference in performance between TCN and criterion models is not significant. This 

finding is similar to (Gopali et al., 2022) and (Sadique and Sengupta, 2021) in a different case. 

Previous studies already confirm that convolutional network architecture is better than generic 

recurrent network architecture for sequence modeling across different tasks (Bai et al., 2018). 

Additional property for a convolutional network in TCN i.e., dilation makes the model can handle a 

long sequence data to perfect the model for sequence modeling. 

6. CONCLUSIONS 

This paper introduced a new way to predict wind shear using ML which can predict the wind 

shear occurrence and duration with just 1 model. The proposed model can reign over criterion models 

almost in all metrics. The proposed model can predict well if fed with enough training datasets. The 

proposed model’s RMSE increases significantly as the total dataset decrease and the total predictor 

increase. Nevertheless, the proposed model can achieve high accuracy (>0.9) in any scheme. 

Furthermore, the proposed model can converge fast enough against criterion models. 
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