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 ABSTRACT: 

The aim of the paper is to show a methodology in order to build a local geoid model using the Compute-

Remove-Restore technique; to achieve this aim, suitable algorithms in Matlab® environment were 

developed. The knowledge of a geoid model assumes an important role in the field of engineering, 

geosciences and geomatics since that it allows the definition of physical heights or the components of 

the deflection of the vertical on a specific area. The area taken into consideration for the research is the 

Campania region (Italy). By comparing the geoid undulation values of the model developed in this 

paper with those extracted from the benchmarks over this area derived from the national levelling 

network, it is possible to obtain centimetre accuracy. 
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1. INTRODUCTION 

Physical geodesy is the science of the figure of the Earth and its gravity field (Hofmann-

Wellenhof & Moritz, 2006). A surface of particular interest for geomatics purposes is the geoid, i.e. 

an equipotential surface of the Earth gravity field (Sansò & Sideris, 2013). The geoid can be computed 

from knowledge of the gravitational field. The most commonly used technique for determining the 

regional geoid model is the "Remove-Compute-Restore" (RCR) technique which it is based on theory 

of the first-order approximation of either Molodensky’s method for quasi-geoid determination or the 

classical geoid modelling by Helmert’s second method of condensing the topography onto the geoid 

(Sjöberg, 2005). The RCR technique is the only practical geoid gravimetric modelling technique for 

combining terrestrial gravimetric data with an Earth Gravity Mode – EGM (Torge, 2001). Indeed, the 

recent global geopotential models, based on the CHAMP (Challenging Minisatellite Payload, a 

German BMBF-funded geophysical mini-satellite mission of GFZ-GeoForschungsZentrum) and 

GRACE (Gravity Recovery and Climate Experiment, a joint mission of National Aeronautics and 

Space Administration - NASA and the German Aerospace Center - DLR) space missions, have 

allowed to obtain high-performance local geoid models, as shown in Barzaghi et al., 2007 for the 

estimation of the gravimetric quasi-geoid named ITALGEO05. 

RCR technique was applied with success in several country over the time. For example, Blázquez 

et al., 2003 show the good results of the regional model called ANDALUSGeoid2002 obtained using 

fast collocation method and the RCR Procedure. Lysaker et al., 2007 dicussed of the quasi-geoid 

evaluation with improved levelled height data for Norway region. El-Ashquer et al, 2017 have 

developed an hybrid gravimetric geoid model HGM2016 by means of least-squares collocation 

method and remove-compute-restore process over Egypt. Kalu et al., 2021 wrote about the RCR 

technique in modelling a gravimetric geoid model for a large data deficient region in West Africa 

(Nigeria) using two sets of long and short wavelength data (a) EGM2008 (long) + Airborne 
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gravimetric observation (AGO) dataset (short) (b) EGM2008 (long) + Terrestrial gravimetric 

undulation (TGU) dataset (short). 

The realization of a regional geoid model and, consequently, the knowledge of geoid undulation 

and vertical deviation components contributes positively in considerable geomatics applications. For 

example, Barzaghi et al., 2016 used the deflection of the vertical components obtained from a local 

model for the correction of External Orientation (EO) parameters (attitude angles) in Direct 

Georeferencing (DG) photogrammetry approach. In addition, the usefulness of the regional model in 

order to transform the ellipsoid height in orthometric in Global Navigation Satellite Systems (GNSS) 

measurements was applied in serval geomatics works present in literature (Baiocchi et al., 2017: 

Parente & Pepe, 2018; Oluyori et al., 2019; Erol et al., 2020; Pepe et al., 2020; Costantino et al., 

2021). 

In this paper, a study for the computation of a local geoid model at a spatial resolution (2.5′) is 

addressed, using the following methods: i) Remove-Compute-Restore technique; ii) constant and 

vertical shift of the EGM2008 geoid undulation model.  

2. STUDY AREA  

The study area taken into consideration concerns the Campania region, an administrative region 

of south Italy; most of it is in the south-western portion of the Italian peninsula (with the Tyrrhenian 

Sea to its west), but it also includes the small Phlegraean Islands and the island of Capri. The 

morphology of this territory is mainly hilly (51%); the remaining part of the territory is mountainous 

(34%) and flat (15%). It covers an area of 13670.95 km². The area taken into consideration, reported 

in Fig. 1, is contained within the geographical coordinates: 39°N ≤ φ ≤ 42°N and 13°E ≤ λ ≤ 16°E. 

 

 
 

(a) (b) 

Fig. 1. Area of interest (AOI) to compute local geoid model; view on Google earth (a) and                            

geographic framework (b). 

3. DATA AND METHODS 

3.1. Remove-Compute-Restore technique 

The compute of any quantity of the gravity field is carried out by means of a frequency analysis 

of the quantity itself, i.e. the following three components are identified: i) low-frequency component, 

represented by global geopotential models (e.g. Earth Gravity Model - EGM2008); ii) medium-

frequency component, which it can be calculated on the basis of local data and; iii) high-frequency 
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component, which can be linked to the topographic effect and is calculated on the basis of a digital 

terrain model (Corchete et al., 2005).  

The "Remove-Compute-Restore" technique can be schematised into the following points:  

- Remove: removal of the contribution of the global model (determined by a spherical 

harmonic model) and of an additional contribution called "Residual Terrain Correction" 

(RTC) representing the effect of the masses between the topography and a reference surface;  

- Compute: calculation of co-geoid undulation residuals; 

- Restore: addition, in terms of geoid undulation, of both that of the global model and that of 

the RTC effect, also called "indirect topographic effect". 

These steps can be summarised as reported below (Srinivas et al., 2012): 

𝑁 = 𝑁𝐺𝑀 + 𝑁𝑖𝑛𝑑 + 𝑁∆𝑔     (1) 

where the geoid undulation values are derived from: 

𝑁𝐺𝑀   global geoid model; 

𝑁𝑖𝑛𝑑   the indirect effect; 

𝑁∆𝑔   from the residues of gravity anomalies. 

3.1.1. Contribution of global geoid model 

The long-wavelength geoid component 𝑁𝐺𝑀 is obtained by the use of a global geopotential 

model; currently, the most widely used model is the EGM2008 (Pavlis et al., 2007; Pavlis et al. 2008; 

Pavlis et al., 2021) publicly released by the U.S. National Geospatial-Intelligence Agency (NGA) 

EGM Development Team which is derived from data from the GRACE satellite (Mayer-Gürr et al., 

2016), topographic data (Saleh et al., 2002) and ground-based gravimetric observations. 

The EGM2008 model was developed up to degree and order 2159, which results in a spatial 

resolution of the model of about 2.5' where the values of the vertical deviation and gravimetric 

anomalies are freely available at the NGA address.  

Computationally, the current 𝑊 potential expressed in terms of spherical polar coordinates, 

radius, longitude, latitude (𝑟, 𝜆, 𝜓), is described by the coefficients 𝐶𝑛𝑚 and 𝑆𝑛𝑚of degree n and order 

m, which are empirically determined and associated with the Legendre polynomial 𝑃𝑛𝑚 (Borre, 2008): 

𝑊(𝑟, 𝜆, 𝜓) =
GM

r
[1 + ∑ (

a

r
)

n
n𝑚𝑎𝑥

n=2

 ∑ (𝐶𝑛̅𝑚 cos mλ + 𝑆𝑛̅𝑚sin mλ) 𝑃̅𝑛𝑚(sin 𝜓) 

𝑛

𝑚=0

 ] (2) 

where 𝐺𝑀 is the product of Newton’s gravitational constant and Earth’s total mass (including the 

atmosphere), 𝑎 is the radius of the bounding sphere and 𝑟 is the geocentric radius. 

Recalling that the anomalous potential 𝑇 is the difference between the one of the gravitational 

field 𝑊 and the gravitational normal one 𝑈, it follows that in the hypothesis to know the anomalous 

potential 𝑇, it is possible to write with the formula of Bruns, the anomalous height 𝜁: 

𝜁 =
𝑇

𝛾
 (3) 

Therefore, the previous equation becomes: 

𝜁(𝑟, 𝜆, 𝜓) =
GM

γ(φ)𝑟
[ ∑ (

a

r
)

n
n𝑚𝑎𝑥

n=2

 ∑ (𝐶𝑛̅𝑚 cos mλ + 𝑆𝑛̅𝑚sin mλ) 𝑃̅𝑛𝑚(sin 𝜓) 

𝑛

𝑚=0

 ]  (4)  

where the value of normal gravity γ(φ) is equal to: 

γ(φ) =
𝛾𝑒  𝑐𝑜𝑠2𝜑 + (1 − 𝑓)𝛾𝑝 𝑠𝑖𝑛2𝜑

√𝑐𝑜𝑠2𝜑 + (1 − 𝑓)2 𝑠𝑖𝑛2𝜑
  (5) 

while at height ℎ, the value of normal gravity γ(h) takes on the following expression: 
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γ(h) = γ(φ) [1 − 2(1 + 𝑓 + 𝑚 − 2 𝑓 𝑠𝑖𝑛2𝜑)
ℎ

𝑎
+ 3 (

ℎ

𝑎
)

2

] (6) 

In addition, the geoid undulation 𝑁 is related to the ellipsoid height ℎ measured along the normal 

to the ellipsoid, the orthometric height 𝐻, the normal height 𝐻∗ and the anomalous height 𝜁, by 

equation (Heiskanen and Moritz, 1967): 

𝑁 = 𝐻∗ − 𝐻 + 𝜁 (7) 

Furthermore, orthometric height is related to normal height through the relationship: 

𝐻 = 𝐻∗ −
Δ𝑔𝐵

γ(h)
𝐻 

(8) 

where Δ𝑔𝐵 represents the Bouguer anomaly. 

Finally, it is possible to calculate the value of the gravity anomaly of the global geopotential 

model with the following relation (Heiskanen and Moritz, 1967; Kuroishi,1993): 

Δ𝑔𝐺𝑀 =
𝐺𝑀

𝑟2
∑ (𝑛 − 1) (

𝑎

𝑟
)

𝑛

∑ 𝑃̅𝑛𝑚

𝑛

𝑚=0

𝑛𝑚𝑎𝑥

𝑛=2

(sin 𝜑) (𝐶𝑛̅𝑚 cos mλ + 𝑆𝑛̅𝑚sin mλ) + Δ𝑔0     (9) 

where Δ𝑔0 is the term of degree 0. 

3.1.2. Contribution of the indirect effect 

The removing or moving of masses changes the potential gravity and, consequently, the geoid; 

this change of the geoid is called indirect effect of gravity reduction. Therefore, the surface calculated 

with Stokes' formula does not refer to the geoid but to a slightly different surface, the co-geoid (Fig. 

2), from which it is possible to extrapolate, using Bruns' theorem, the following formula: 

 

𝑁𝑖𝑛𝑑 =
𝛿𝑊

𝛾
 (10) 

 
Fig. 2. Reference surfaces. 

 

Under the assumption of a plane approximation, the term 𝑁𝑖𝑛𝑑 can be written using two terms 

(Schwarz et al., 1990): 

𝑁𝑖𝑛𝑑 = −
𝜋𝐺𝜌

𝛾
ℎ2(𝑥𝑃 , 𝑦𝑃) −

𝐺𝜌

6𝛾
∬

ℎ3(𝑥, 𝑦) − ℎ3(𝑥𝑃 , 𝑦𝑃)

[(𝑥𝑃 − 𝑥)2 + (𝑦𝑃 − 𝑦)2]3 2⁄
𝑑𝑥𝑑𝑦

𝐴

 (11) 

𝜌  density of topography assumed to be 2,67𝑔/𝑐𝑚−3; 
(𝑥𝑃 , 𝑦𝑃) coordinates of the point; 

(𝑥, 𝑦)   coordinates of integration points;  
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ℎ(𝑥, 𝑦) elevation model, taking into account only the masses above the geoid, i.e. 

only the positive elevations; 

𝐴   study area. 

The plane approximation of the expression of 𝑁𝑖𝑛𝑑 can be write as a convolution formula 

(Schwarz et al., 1990): 

𝑁𝑖𝑛𝑑 = −
𝜋𝐺𝜌

𝛾
ℎ2 −

𝐺𝜌

6𝛾
𝑓 ∗ ℎ3 +

𝐺𝜌

6𝛾
𝑠ℎ3  (12) 

where: 

𝑓(𝑥, 𝑦) =
1

(𝑥2 + 𝑦2)3 2⁄
 (13) 

𝑠 = ∬ 𝑓(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦
𝐴

 (14) 

3.1.3. Contribution of the residual gravity 

The last term 𝑁∆𝑔 of equation (1) represents the contribution of the gravity residual which, taking 

into account the Stokes equation, is (Hofmann and Moritz, 2006): 

𝑁∆𝑔 =
𝑅

4 𝜋 𝛾
∬ Δ𝑔(𝜓, 𝛼) 𝑆(𝜓)𝑑𝐴

𝐴

 (15) 

𝛾   normal gravity on the ellipsoid; 

𝑅   mean earth radius; 

𝑆(𝜓)   Stokes function; 

Δ𝑔   reduced anomalies according to the Helmert condensation method. 

Under the assumption of spherical approximation, equation (15) can be expressed in convolution 

form using the one-dimensional (1-D) Fourier transform (Haagmans et al., 1993): 

𝑁∆𝑔 =
𝑅 Δ𝜙 Δ𝜆

4 𝜋 𝛾
𝐹𝐼

−1 [ ∑ 𝐹𝐼(Δ𝑔 𝑐𝑜𝑠𝜙)𝐹𝐼(𝑆)

𝜙𝑛

𝜙′=𝜙𝐼

] (16) 

where 𝐹𝐼(𝑆) represents the discrete Fourier transform (DFT) and 𝐹𝐼
−1  its inverse transform (IDFT). 

Instead, in the hypothesis of plane approximation, the Stokes function becomes (Schwarz et al., 1990): 

𝑆(𝜓) ≈ 2 𝜓⁄       (17) 

Therefore, the contribution of the gravity residue 𝑁∆𝑔, with appropriate substitutions and passing 

from polar coordinates (𝑠, 𝛼) to Cartesian coordinates (𝑥, 𝑦), takes on the following expression: 

𝑁∆𝑔 =
1

2 𝜋 𝐺
∬

Δ𝑔

(𝑥𝑝 − 𝑥)
2

+ (𝑦𝑝 − 𝑦)
2

𝐴

 (18) 

The equation (18) can be rewritten in terms of FFT (Fast Fourier Transform): 

𝑁∆𝑔 =
1

2 𝜋 𝐺
Δ𝑔(𝑥, 𝑦) ∗ 𝑙𝑝(𝑥, 𝑦) (19) 

with 𝑙𝑝(𝑥, 𝑦) = 1 √𝑥2 + 𝑦2⁄ , which is called the "kernel of the plane approximation". 

 

To determine the 𝑁∆𝑔 term, it is necessary to calculate the value of the gravity anomalies, using 

the following relationship: 

Δ𝑔 = Δ𝑔𝑓𝑟𝑒𝑒 + 𝑐𝑡 + 𝛿𝑔                                                       (20) 

Δ𝑔𝑓𝑟𝑒𝑒   free-air gravity anomaly; 
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𝑐𝑡  terrain correction; 

𝛿𝑔 indirect secondary effect on gravity. 

The indirect secondary effect on gravity can be expressed as a function of 𝑁𝑖𝑛𝑑 (Heiskanen and 

Moritz, 1967; Kuroishi, 1993): 

𝛿𝑔 = 0.3086 𝑁𝑖𝑛𝑑      (21) 

Therefore, the residual anomaly field must first be determined, removing the effect of the short 

wave associated with topography and bathymetry. This correction is called "Residual Terrain 

Correction" RTC (Forsberg, 1984) and can be described through the following relation (Corchete et 

al., 2005), where the superscript "pts" denotes that the points in the study area are randomly 

distributed: 

∆𝑔𝑟𝑒𝑑
𝑝𝑡𝑠

= ∆𝑔𝑓𝑟𝑒𝑒
𝑝𝑡𝑠

− 2𝜋𝐺𝜌(ℎ − ℎ𝑟𝑒𝑓)
𝑝𝑡𝑠

+ 𝑐𝑡
𝑝𝑡𝑠 − ∆𝑔𝐺𝑀

𝑝𝑡𝑠
  (22) 

𝐺  Newton's gravitational constant; 

𝜌  density;  

ℎ  point elevation; 

ℎ𝑟𝑒𝑓     elevation of reference surfaces; 

 𝑐𝑡  correction calculated for land and sea points; 

∆𝑔𝐺𝑀   gravity anomaly calculated from the global geopotential model. 

The reference surface ℎ𝑟𝑒𝑓  can be obtained by applying a 2-D low-pass filter to the elevation 

model. 

 The density value that can be used in equation (22) for the RTC correction are: 

𝜌𝑜𝑤 = 2,67𝑔 𝑐𝑚−3 for points on the ground; 

𝜌𝑢𝑤 = 1,64 𝑔 𝑐𝑚−3 for points below water. 

The density value for the correction below water is given by the difference between the density 

of the soil and that of the water, which is equal to 𝜌𝑤 = 1,03 𝑔 𝑐𝑚−3. 

For the computation of the Fourier transform, it is necessary that the data be arranged in the form 

of a grid; several methods and algorithms for performing this operation are available in the literature: 

- Briggs method (Briggs, 1974); 

- least squares collocation method (Moritz, 1980); 

- Kriging method (Davis, 1986); 

- spline algorithm (Smith & Wessel, 1990). 

By arranging the values of the gravity anomalies in grid form, the effect of the RTC can be 

restored through the following relationship (Corchete, 2010): 

∆𝑔𝑟𝑒𝑑
𝑔𝑟𝑖𝑑

=  ∆𝑔𝑓𝑟𝑒𝑒
𝑔𝑟𝑖𝑑

− 2𝜋𝐺𝜌(ℎ − ℎ𝑟𝑒𝑓)
𝑔𝑟𝑖𝑑

+ 𝑐𝑡
𝑔𝑟𝑖𝑑 − ∆𝑔𝐺𝑀

𝑔𝑟𝑖𝑑
                      (23) 

In equations (20) and (22), the term 𝑐𝑡 takes into account the influence of the topography. In fact, 

especially in particularly steep terrain, the topography assumes a fundamental role in the calculation 

of the undulations. The correction 𝑐𝑡 of the terrain to be applied, approximating 𝑧 = ℎ𝑃, i.e. in the so-

called "linear approximation" (Heiskanen and Moritz, 1967), is: 

𝑐𝑡 = 𝐺𝜚 ∬ ∫
𝑧 − ℎ𝑃

[(𝑥𝑃 − 𝑥)2 + (𝑦𝑃 − 𝑦)2 + (𝑧𝑃 − 𝑧)2]3 2⁄

ℎ

ℎ𝑃𝐴

 (24) 

Equation (24), rewritten in the form of a convolution (Sideris, 1990), takes the following form: 

𝑐𝑡 =
1

2
𝐺𝜚[𝑓 ∗ ℎ2 − 2ℎ(𝑓 ∗ ℎ) + ℎ2𝑠] 

(25) 

where 

𝑓(𝑥, 𝑦) =
1

(𝑥2 + 𝑦2)3 2⁄
 (26) 
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𝑠 = ∬
1

(𝑥2 + 𝑦2)3 2⁄
 𝑑𝑥 𝑑𝑦

𝐴

 (27) 

As an alternative to the FFT, terrain correction can be achieved with the prism method. which 

consists of dividing the terrain into many prisms; depending on the method of terrain condensation, 

two models are available: i) Prism model; ii) Mass line. The prism model associates the density of 

each prism with its average height, while in the mass line model the mass of the prism is 

mathematically concentrated along its barycentre axis, therefore the topography contained in the 

prism is represented by a line (Fig. 3). 

 
Fig. 3. Types of soil condensation: mass prism (left) and mass line (right). 

 

In the first case, equation (25), after having reported the DTM in the form of a grid in M and 𝑁 

cell elements of size (Δx; Δy), can be rewritten in the following form (Yurt & Gokalp, 2006): 

𝑐𝑡 = 𝐺𝜌 ∑ ∑ [𝑥 𝑙𝑛 (𝑦 + 𝑟(𝑥, 𝑦, 𝑧) + 𝑦 𝑙𝑛(𝑥 + 𝑟(𝑥, 𝑦, 𝑧))) . +   

𝑀−1

𝑚=0

𝑁−1

𝑛=0

−  𝑧 𝑎𝑟𝑐𝑡𝑎𝑛
𝑥𝑦

𝑧 𝑟(𝑥, 𝑦, 𝑥)
] |

 
𝑥𝑖 −(𝑥𝑛+∆𝑥/2)

 𝑥𝑖 −(𝑥𝑛+∆𝑥/2)

|
 

𝑥𝑖 −(𝑥𝑛+∆𝑥/2)

 𝑥𝑖 −(𝑥𝑛+∆𝑥/2)

|
 

𝑥𝑖 −(𝑥𝑛+∆𝑥/2)

 𝑥𝑖 −(𝑥𝑛+∆𝑥/2)

 

(28) 

while in the second case (Yang, 1999) becomes: 

𝑐𝑡 = −𝐺𝜌Δ𝑥Δ𝑦 ∑ ∑ [
1

𝑟(𝑥𝑖 − 𝑥, 𝑦𝑗 − 𝑦, 0)
−

1

𝑟(𝑥𝑖 − 𝑥, 𝑦𝑗 − 𝑦, ℎ𝑖𝑗 − ℎ𝑛𝑚)
]

𝑀−1

𝑚=0

𝑁−1

𝑛=0

 (29)  

where: 

𝐺  Newton's gravitational constant; 

ρ  density;  

 hij  point elevation (i, j); 

 r  radius of the coordinate sphere in the Cartesian system (𝑥, 𝑦, 𝑧). 

3.2. Adjustment of the gravimetric geoid model 

The sum of the contributions N𝑖  gives the undulation model according to a geophysical approach. 

If the 𝑁 model of the geoid undulation were correct, the following relationship would occur: 

ℎ − 𝐻 − 𝑁 = 0       (30) 

Factors causing discrepancies are (Fotopoulos, 2003): 

- random errors in the calculation of heights ℎ, 𝐻, 𝑁; 

- inconsistencies of the datum intrinsic to the different types of heights; 

- errors and distortions (errors related to the measurement of the wavelength for the geoid 

measurement, systematic errors related to the GNSS measurement and to the limits of the 

levelling network); 
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- theoretical assumptions/approximations made in the treatment of the observed data 

(neglecting the topography of the sea or river, corrections due to the influence of the tides); 

- instability of the reference monument station over time (geodynamic effects). 

Therefore, it is necessary an "adjustment" of the geoid undulation model on the vertices deduced 

from the network where the orthometric height derived from a levelling (for example the fundamental 

network) and the ellipsoid height derived from GNSS (or Global Position System - GPS) 

measurement; the equation of the least squares system takes the following form: 

(ℎ𝐺𝑃𝑆 − 𝐻𝑙𝑒𝑣) − 𝑁𝑔𝑟𝑎𝑣𝑖𝑚 = 𝑁𝐺𝑃𝑆 − 𝑁𝑔𝑟𝑎𝑣𝑖𝑚 = 𝛿𝑁 = 𝑙 = 𝐴𝑋    (31) 

ℎ𝐺𝑃𝑆   ellipsoid height of the reference point; 

𝐻𝑙𝑒𝑣   orthometric height measured by levelling; 

𝑁𝑔𝑟𝑎𝑣𝑖𝑚  geoid undulation obtained by the gravimetric method; 

𝐴𝑋   surface trend; 

𝛿𝑁   residual. 

Using a four-parameter model, itis possible to obtain the following formula (Isioye & Youngu, 

2009): 

𝐴𝑋 = 𝑎0 + 𝑎1𝑐𝑜𝑠𝜑𝑐𝑜𝑠𝜆 + 𝑎2𝑐𝑜𝑠𝜑𝑠𝑖𝑛𝜆 + 𝑎3𝑠𝑖𝑛𝜑     (32) 

where 𝜑, 𝜆 are the geodetic latitude and longitude and the parameters 𝑎0, 𝑎1, 𝑎2 and 𝑎3 take into 

account the inconsistency between the GPS/levelling and the gravimetric geoid datum.  

Subsequently, the residuals can be interpolated using the various interpolation techniques known 

in the literature, such as linear interpolation, kriging, etc. 

4. RESULTS  

4.1. Computation of the geoid on Campania region (Italy) 

In the case study, the calculation of 𝑁𝐺𝑀 was performed using the EGM2008 geopotential model, 

freely available at the following website: https://earth-info.nga.mil/php/download.php?file=egm-

08interpolation 

Each raster file contains, in 2.5′ steps, the geoid undulation values. Since the area under study is 

less extensive than that of a "tile" of the EGM2008 model, after downloading the raster file, it was 

necessary to implement an algorithm in Matlab® environment to extrapolate the undulation values 

and performing a clip on AOI. The contribute of geoid undulation model 𝑁𝐺𝑀 thus created (Fig. 4) 

showed a variability between 43m and 50m. 

 

 
Fig. 4. Plot of the EGM2008 geoid model of the study area, contribute of 𝑁𝐺𝑀.  

 

https://earth-info.nga.mil/php/download.php?file=egm-08interpolation
https://earth-info.nga.mil/php/download.php?file=egm-08interpolation
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Moreover, from the section shown in Fig. 5 it is easy to notice how local variations over small 

areas are not detected by the geopotential model. For example, in the area under study, the island of 

Ischia, which has an extension of about 8′ in longitude and 5′ in latitude, the values at the nodes of 

which the grid is composed have an almost nil gradient, despite the morphology of the territory 

reaches altitudes up to almost 750m above sea level and has rather significant gravimetric anomalies. 

 

 

 

Fig. 5. Cross-section of the geoid model EGM2008 on the island of Ischia, an island close to the Italian 

peninsula (within Campania region). 

 

The contribution of the indirect topographic effect 𝑁𝑖𝑛𝑑 was obtained, under the assumption of 

plane approximation, by applying the formula (12). In Matlab® environment, an algorithm for the 

calculation of 𝑁𝑖𝑛𝑑 has been implemented, where the convolution product between the functions in 

equation (14) was obtained using the Fourier transform, in particular the Fast Fourier Transformation. 

As regards the solution of the double integral reported in the formula (15), the Matlab® function 

implementing Simpson's quadrature method was used; this latter function was suitably modified in 

order to divide the area under study into a matrix of 200x200 elements and, on each of them, the 

double integral was calculated. To calculate the contribution of the indirect effect, the Shuttle Radar 

Topography Mission (SRTM) was used as Digital Terrain model (DTM); in this model, topographic 

and elevation data were collected in February 2000 by the Space Shuttle Endeavour, which used a 

sophisticated synthetic aperture radar-altimeter for this mission. The elementary measurement cell 

(pixel) corresponds to 3 square arc seconds, i.e. approximately 90m x 90m measured on the ground, 

with a declared accuracy of 20m in planimetry and 16m in altimetry (Werner, 2001). The elevation 

values of this model are freely downloaded from the Consortium for Spatial Information (CGIAR-

CSI) website.  

Since the contribution of the indirect effect is closely linked to the morphology of the territory, 

in the study area, which does not have any major reliefs, it was found to be of little relevance; more 

precisely, it varied from a few centimetres to about 1 metre. It should be noted that the previous values 
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are to be considered as absolute values, as the 𝑁𝑖𝑛𝑑 contribution always gives rise to negative values 

since the masses above the geoid have been removed. 

𝑁∆𝑔 can be calculated either by the collocation method or by the Stokes formula which, under 

the assumption of a plane approximation and expressed in the form of a convolution, assumes the 

following formula (Corchete et al., 2005): 

 

𝑁∆𝑔 =
1

2 𝜋 𝐺
∆𝑔(𝑥, 𝑦) ∗ 𝑙𝑝(𝑥, 𝑦) +

1

 𝜋 𝐺
∆𝑔(𝑥, 𝑦)√𝑥2 + 𝑦2  (33) 

where a second term has been added to equation (20) to eliminate singular points. A Matlab® 

algorithm was implemented in order to extracts the values of the residual anomalies, 𝛥𝑔, obtained 

from the relation (22). To achieve this aim, the value are gridded; therefore, the equation (22) can be 

written in the following way: 

 

∆𝑔𝑟𝑒𝑑
𝑔𝑟𝑖𝑑

=  ∆𝑔𝑓𝑟𝑒𝑒
𝑔𝑟𝑖𝑑

− 2𝜋𝐺𝜌(ℎ − ℎ𝑟𝑒𝑓)
𝑔𝑟𝑖𝑑

+ 𝑐𝑡
𝑔𝑟𝑖𝑑 − ∆𝑔𝐺𝑀

𝑔𝑟𝑖𝑑
  (34) 

Since all the terms in the previous relation are not gridded, as can be observed for Δ𝑔𝑓𝑟𝑒𝑒 , the 

first operation performed was to transform them in grid form with a spatial resolution of 2.5′, using 

"kriging" algorithm. The gravimetric values Δ𝑔𝑓𝑟𝑒𝑒, provided by the "Bureau Gravimétrique 

International" (BGI), are not distributed according to a regular grid but thicken where measurements 

were made for local surveys as shown in Fig. 6, where the gravity anomalies (free anomalies) are 

reported, both on land and sea.  

 

 
 

Fig. 6. Distribution of free-anomalies.  
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The term ∆𝑔𝐺𝑀
𝑔𝑟𝑖𝑑

 represents the gravity anomaly, computed by the EGM2008 global geopotential 

model, whose grid of values with a 2.5′ step can be obtained from the NGA website. The data are 

recorded in the 'big endian file' format and, thanks to a special script in Fortran, a text file of about 

4.5GB was obtained containing three grids of values (N-S deflection of vertical component, E-O 

deflection of vertical component and gravity anomalies); subsequently, with a manual editing of the 

data, three separate files were created. The minimum, maximum and mean value of the local gravity 

anomalies and those related to the geopotential model are shown in Table 1. 
Table 1. 

Statistical values of gravity anomalies. 

 
Min  

(mgal) 

Max  

(mgal) 

Medio  

(mgal) 

Measured anomalies (𝛥𝑔𝑓𝑟𝑒𝑒)  -117 161 38 

Anomalies taken from EGM2008(∆𝑔𝐺𝑀) 21 203 43 

 

The term 2𝜋𝐺𝜌 (ℎ − ℎ𝑟𝑒𝑓)
𝑔𝑟𝑑

 represents the gravimetric contribution that masses of height h, 

obtained by integrating altimetric data from the SRTM height model with bathymetric data from 

ETOPO1 (Amante & Eakins, 2009), produce with respect to a reference surface ℎ𝑟𝑒𝑓  obtained by 

applying a 2-D low-pass filter to the digital terrain model. By means of a "spatial query" in a 

Geographic Information Systems (GIS) environment, the land points were separated from the sea 

points. Indeed, spatial query make it possible to select elements in a vector layer using spatial 

relationships (intersect, contain, touch etc.) with elements in a second layer. As far as the terrain 

correction is concerned, the formula (22) valid for plane approximation was applied in the form of 

convolution. The trend of the contribution 𝑐𝑡
𝑔𝑟𝑖𝑑   is of the order of some milligal. Therefore, once all 

the contributions of the residual anomalies ∆𝑔𝑟𝑒𝑑
𝑔𝑟𝑖𝑑

 (Eq. 24) were determined using FFT, it was 

possible to calculate the contribution of the residual effect 𝑁3. In this way, the three contributions of 

the geoid undulation, 𝑁1,𝑁2, 𝑁3, were determined; the sum of these latter terms allows to obtain a 

geoid model on the basis of gravimetric measurements only, i.e. the so-called gravimetric geoid.  

In the determination of the gravimetric geoid model, no reference has so far been made to levelled 

heights and thus to the national height reference network. Therefore, an adjustment of the geoid model 

on the vertices taken from the levelling network is necessary; these vertices contain the value of the 

geoid undulation since this value was obtained as the difference of the orthometric height, derived 

from the levelling vertices, and the ellipsoid height obtained from the GPS measurements. At present, 

the Italian Military Geographic Institute (IGMI) realized approximately 20,000 km of high-precision 

levelling lines. Analysing the levelling network on the Campania region, it is noted that on the islands, 

such as Ischia, it is completely absent; this translates into the lack of reference points for verifying the 

geoid undulation on these areas. However, it should be noted that in this area, there is a levelling 

network (Galvani et al., 2021) realized by National Institute of Geophysics and Volcanology (Italian: 

Istituto Nazionale di Geofisica e Vulcanologia, INGV). 

In order to take into account the inconsistency between the GPS/levelling datum and the 

gravimetric geoid datum, 10 vertices of the IGM network with a uniform distribution in the test area 

were chosen. By adopting a four-parameter model and constructing a least squares system in 

Matlab®, the parameters a0, a1, a2 and a3 that characterise this inconsistency were determined. The 

residuals obtained from the difference between 𝑁𝑔𝑟𝑎𝑣𝑖𝑚𝑒𝑡𝑟𝑖𝑐𝑜  and 𝑁𝐺𝑃𝑆/𝑙𝑖𝑣, were subsequently 

interpolated by "kriging" method and added to the pre-adjustment 𝑁 model, i.e. the gravimetric one.  
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In the following graph (Fig. 7) the abscissae indicate the vertices taken into consideration, while 

the ordinates indicate the geoid undulation values, expressed in metres. In Fig. 7, the red bar indicates 

the pre-adjustment undulation, the green bar the post-adjustment undulation and the blue bar the 

levelling reference undulation; by comparing them, it can be seen that the green bar is closer to the 

blue bar, denoting the improvement of the geoid model following the adjustment. It follows that the 

high resolution of the geoid is related to the levelling network, therefore, the higher the number of 

vertices with known double elevation, the higher the accuracy of the geoid model.  

 

 
Fig. 7. Comparison of geoid undulations over ten benchmarks. 

 

The new geoid undulation model, obtained in the GEOTRAV reference system relative to the 

test area, is shown in Fig. 8. 

 

 
Fig. 8. Local geoid model on AOI. 
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4.2. 'Vertical shift' of the EGM2008 global geoid undulation model 

The global model provides a good part of the geoid undulation values, net of the contribution due to 

the influence of topography and strong gravimetric influences.  

For this reason, the undulation values of the geoid model EGM2008 were compared on the Campania 

region, where the contribution of topography is less relevant than in other areas (e.g. the Alps), with those 

obtained on the test area with the remove-restore technique with subsequent adjustment on the vertices by 

GPS/levelling (Pepe & Prezioso, 2016). 

The differences in geoid undulation between the two models were assessed on the basis of those 

parameters that provide information on the characteristic of the distribution of a one-dimensional 

variable, namely the first-degree moment (or mean) and the standard deviation (𝜎): 

( ) n

1 i ii=1
m =x x f       (34) 

( ) n2 2

i=1 i ix v f = =       (35) 

where 
if  is the relative frequency and with iv the following quantity: 

( )1mi iv x x= −      (36) 

In this case study, the differences of geoid undulation values showed mean and standard deviation 

values of 𝑚1(𝑥) = −0.21𝑚 and 𝜎 = 0.08 𝑚 with minimum and maximum values, respectively 

𝑚𝑖𝑛 = −0.76𝑚 and 𝑚𝑎𝑥 = +0.52𝑚. 

The analysis of the statistical data leads to the application of a constant translation equal to minus 

m1(x), to the EGM2008 model, obtaining a new local geoid model with minimum and maximum 

undulation difference values compared to the global one:  𝑚𝑖𝑛 = −0.16 𝑚, 𝑚𝑎𝑥 = +0.22 𝑚. 

5. CONCLUSIONS 

The development of algorithms in Matlab® environment allowed, using the remove-compute-

restore technique, to build a local geoid model. In this way, it was possible to obtain the values of the 

geoid undulation. The implementation of these algorithms in Matlab® is facilitated by the inclusion 

of numerous and increasingly powerful mathematical and algebraic functions in this environment. 

In particular, the research that led to the building of a local geoid model allowed to highlight 

several aspects on the study area: i) high performance of the EGM2008 global model on the Campania 

region; ii) "smoothing" effect of the geoid undulation values of the EGM2008 model on the small 

islands; iii) improvements of the geoid model obtains by introducing into the adjustment the values 

of the IGM vertices determined with GPS technology and subsequently connected to the levelling 

network. In addition, the realization of new levelling lines would allow to obtain a higher accuracy of 

the geoid model and thus make it available at a higher spatial resolution. 

Therefore, the geoid undulation, available in vector or raster format, can be used in several 

geomatics applications, such as the knowledge physical height by GNSS measurements. Indeed, 

GNSS-based applications are becoming increasingly common in various fields, such as topography, 

terrestrial or aerial photogrammetry and remote sensing.  

Furthermore, once the geoid undulation model has been computed, it is possible to calculate with 

elevated accuracy the components of the deflection of the vertical (the meridional component ξ and 

the East-West component or first vertical η) using the formulas of Vening Meisnez and useful in 

several geomatics applications. 
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