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ABSTRACT: 

Indonesia is one of the countries with the largest area of tropical peatlands in the world. These wide 

peatlands have a vital role in the carbon cycle and carbon storage in huge quantities, thus strict 

conservation in the area is necessary. One effort to carry out conservation is to understand the spatial 

distribution of carbon stock in peatlands. This study aims to map the spatial distribution of carbon stock 

based on peat thickness modeling using machine learning algorithms, i.e., Random Forest (RF), 

Quantile Regression Forests (QRF), and Cubist. A case study was conducted in a part of Lake Sentarum 

National Park, Indonesia where human interference is still limited. Digital elevation model (DEM) and 

synthetic aperture radar (SAR) data were included as the input variables. The results showed that RF 

performed the best among other models to estimate peat thickness (mean = 1.877 m) with an RMSE 

(root mean square error) of 0.483 m and an R2 of 0.786. DEMs are the most important parameters in 

our analysis compared to SAR data. Based on the best model, we estimated the total volume of 

5,112,687 m3 in the study area, produced at 12.5 m resolution, which was then converted to a total of 

carbon stock at 0.337 ± 0.106 Mt carbon. 
 

Key-words: Peat thickness, Carbon stock, Machine learning, Remote Sensing, Tropical peatland. 

1. INTRODUCTION 

The role of tropical peatlands is vital in the global carbon cycle considering their immense 

carbon-rich ecosystems (Dargie et al., 2017; Page et al., 2011). Ninety percent (404.5 Mha) of 

peatlands worldwide are located in boreal and temperate zones (Yu et al., 2010), however, the carbon 

content of tropical peatlands is greater than high latitude peatlands (Bourgeau-Chavez et al., 2018). 

Thus, tropical peatlands could store up to 104.7 GtC from their limited coverage (90-170 Mha) 

(Ribeiro et al., 2021). Nearly half of tropical peatlands are situated in South-East Asia (43%; 24.8 

Mha) (Dargie et al., 2017; Page et al., 2011). Tropical peatlands are widely distributed in three major 

Indonesian islands including Sumatra, Kalimantan, and Papua, with a total area of 13.43 Mha (Anda 

et al., 2021). This area undoubtedly provides carbon storage in a huge quantity (Mitra et al., 2005), 

while on the other hand, it has a large potential as a carbon emission source due to the conversion to 

agricultural and plantation purposes (Umarhadi et al., 2021).  
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Tropical peat formation is mainly resulted from the accumulation of decomposed rainforest plant 

debris (branches, leaves, roots, and trunks) for million years (Rieley & Page, 2016), leading to the 

abundance of carbon content and thus considered as organic soils. The development of peatlands in 

South-East Asia started in the Pleistocene era (26,000 yr BP) for the inland peatlands (Page et al., 

2004), followed by the formation in the coastal and sub-coastal area in the Holocene period (5,000-

6,000 yr BP) (Supardi et al., 1993). The accumulation process continues to form a dome where is 

bordered by the sea, rivers, and/or in the depression area enclosed by levees (Melling, 2016). The 

mound of peat dome is indistinct in a gradient of about 1 m km-1 on the surface with higher elevation 

toward the center of the dome (Anderson, 1964). This indicates the thickness of peat is related to the 

higher accumulation, hence it stores a larger amount of carbon. 

Considering the importance of peatlands, mapping the distribution of peat thickness and soil 

carbon stock is a part of efforts to mitigate disasters and climate change, especially in reducing carbon 

emissions. Moreover, the governance on peatlands is based on peat thickness whether it can be used 

for cultivation or should be fully conserved, with a threshold of 3 m thickness in Indonesia (Dohong 

et al., 2018). The most common method to spatially predict peat thickness is geostatistics by 

interpolating the thickness or depth data collected in the field (Altdorff et al., 2016; Jaenicke et al., 

2008; Keaney et al., 2013; Silvestri et al., 2019), however, the density and distribution of samples 

highly influence the results. Spatial modeling has been utilized taking the high correlation between 

peat thickness and surface elevation using empirical methods such as linear regression (Holden & 

Connolly, 2011), yet it is challenging to accommodate the elevation variability of the underlying 

mineral substrate (Silvestri et al., 2019). The use of multivariate data coupled with machine learning 

methods can achieve an accurate peat thickness estimation and allow the evaluation of variables' 

importance in the modeling (Rudiyanto et al., 2018). 

Previous research explored the prediction of peat thickness using 14 machine learning models 

based on environmental variables including elevation, terrain parameters, and distance from rivers 

and/or sea, as well as radar and optical satellite imageries in Bengkalis Island, where vast peat 

degradation peatland has occurred (Rudiyanto et al., 2018). The variables used considered the factors 

contributing to the development of soils that consist of peat properties, organisms including human 

activities, relief, and geographical position (McBratney et al., 2003; Rudiyanto et al., 2018). Our study 

demonstrated peat thickness estimation in undisturbed peat swamp forest in Lake Sentarum National 

Park, Borneo Island. We adopted the previous study by exploring multi variables and evaluating 

machine learning methods (i.e., Random Forest, Quantile Regression Forest, and Cubist) to produce 

high-resolution peat thickness (12.5 m). Moreover, spatial information of carbon stock was derived 

based on peat thickness, bulk density, and carbon content. 

2. STUDY AREA 

Lake Sentarum National Park (LSNP) is a national park in the middle of Borneo Island, 

Indonesia, located in the floodplain of Kapuas River upstream. Peat swamp forest covers 16% of the 

national park and is considered one of the oldest Indonesian peat swamps alongside Putussibau 

peatlands (> 30000 yr BP) (Anshari et al., 2001; Giesen & Anshari, 2018; Ruwaimana et al., 2020). 

The study was conducted in the Kerinung Forest (3,627.93 ha; 0°43'48"–0°49'4.49"N and 112°1'24"–

112°21'54"E) of LSNP, just about 100 km northward from Equator line. This work focused on the 

smaller area in Kerinung Forest with a total area of 272.3 ha (0°45'21"N and 112°1'49"E) as shown 

in Fig. 1. 

As a basin, the water sources to LSNP flow from hills and plateaus in the surroundings. 

Temperatures range from 25°C–44°C with rainfall between 3000-5000 mm. Soil types in the LSNP 

are generally divided into two large groups, namely sediments and organosols on land and sand and 

clay in hilly areas (Giesen, 1987). The level of peat maturity in Kerinung Forest consists of various 

levels including fibric, hemic, and sapric. 
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Fig. 1. Study area located in Kerinung Forest inside Lake Sentarum National Park, Indonesia.  

Planet© imagery is used for the visualization. 

3. MATERIALS AND METHODS 

3.1. Field Data 

Peat thickness data in the field were collected using peat soil drilling tools on 7–17 September 

2019. Samples were determined by a transect method with a gap of 200 m between each plot. A total 

of 36 sites were plotted and the measurement was conducted 4–9 times in the center of the plot and 

surroundings to cover 236 samples in total. The number of repetitions is based on consideration of 

the thickness of the peat and the time taken for sampling. The deeper the peat thickness, the less the 

sampling repetition. A handheld Garmin GPSMAP 64s receiver was used to obtain the coordinates 

for each sample point by a single point positioning. GPSMAP 64s receives locations obtained from 

GPS and GLONASS at high sensitivity with a quad-helix antenna (https://www.garmin.com/en-

US/p/140022). The device can provide a horizontal accuracy of up to 3 m (Hil, 2020). 

 

3.2. Spatial data  

We refer to Rudiyanto et al., 2018 for parameter selection used in peat thickness modeling. This 

study used the parameter of elevation and synthetic aperture radar (SAR) images as both data 

contributed the highest in the estimation (Rudiyanto et al., 2018). 

3.2.1. Elevation data 

Digital elevation model (DEM) is one of the crucial parameters in modeling the thickness of peat 

(Rudiyanto et al., 2018) because the surface of the elevation model can determine the location where 

the peat dome is known (Jaenicke et al., 2008). The thickness can be generally figured out from the 

shape of the peat dome, showing that the closer to the peat dome, the deeper the thickness is. We used 

DEMs retrieved from two sources, i.e., Indonesian National DEM (DEMNAS) and ALOS DEM. 

DEMNAS is a high resolution (8.25 m) national elevation dataset compiled from TERRASAR-X (5 

m), Airborne Interferometric Synthetic Aperture Radar (IFSAR; 5 m), and ALOS PALSAR (11.25 

m), added with stereo-plotting data (Geospatial Information Agency, 2018). In the study area, IFSAR 

acquired in 2005 was used as the source of DEMNAS. ALOS PALSAR (Advanced Land Observing 

Satellite-Phased Array-Type L-Band Synthetic Aperture Radar) Radiometrically Terrain Corrected 

(RTC) DEM was also used that has a spatial resolution of 12.5 m.  
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3.2.3. Synthetic aperture radar data 

Synthetic aperture radar (SAR) images used in this study consist of two different sensors, i.e., 

Sentinel-1 and ALOS PALSAR, representing C and L-band, respectively. Sentinel-1 works at a 

frequency of 5.405 GHz (wavelength = 5.6 cm), capturing the same location on Earth’s surface 

frequently every 6 days, thanks to its satellite constellation: Sentinel-1A and Sentinel-1B. The images 

were obtained from the Alaska Satellite Facility (ASF) Distributed Active Archive Center (DAAC) 

services and Google Earth Engine (GEE) cloud computing platform acquired in 2019. The images 

fetched from ASF DAAC were at Radiometric Calibration of S-1 Level-1, while images from GEE 

were provided at terrain correction level. ALOS PALSAR has a longer wavelength (24 cm; frequency 

= 1.27 GHz) than Sentinel-1. The image is freely available downloaded from ASF DAAC with an 

acquisition time in 2011. Both Sentinel-1 and ALOS PALSAR respectively provide dual-polarization 

(VV-VH and HH-HV) with a slight difference of spatial resolution (10 and 12.5 m). Supplementing 

the individual polarization, some image transformations were also included, i.e., ratio, mean, and 

difference (Table 1). The total spatial data inputs used for the modeling are 13 image layers. 

Table 1.  

Equations of image transformations used for Sentinel-1 and ALOS PALSAR. 

Image transformation Sentinel-1 ALOS PALSAR 

Ratio VV/VH HH/HV 

Mean (VV + VH) / 2 (HH + HV) / 2 

Difference VV-VH HH-HV 

 

3.3. Peat thickness modeling   

The methods used to obtain a peat thickness model are divided into several machine learning 

regressions. These algorithms include Random Forest (RF) (Breiman, 2001), Quantile Regression 

Forests (QRF) (Meinshausen, 2006), and Cubist (Kuhn et al., 2021) – all of them is non-parametric 

regression methods. Non-parametric regression is getting more prominent to describe geographical 

phenomena using Earth observation data and it has the capability to deal with non-linear complexity, 

however, it may allow overfitting the training dataset (Houborg & McCabe, 2018; Verrelst et al., 

2015). RF is a tree-based ensemble learning method that the results are generated from the 

aggregations of numerous classifiers (Liaw & Wiener, 2002). Many bootstrap samples are firstly 

drawn from the given training dataset, then a tree is evolved by the bootstrap sample with 

modifications: at each node, randomly sample mtry (number of random variables in each tree) of the 

predictors and choose the best split from among those variables (Liaw & Wiener, 2002). QRF is the 

generalization of the random forest by modeling the conditional quantiles of an outcome of interest 

as a function of covariates without an assumption of normal distribution (Meinshausen, 2006; Wei et 

al., 2019).  

Cubist is a rule-based regression based on the Model Tree approach according to the works by 

(Quinlan, 1992) and (Quinlan, 1993). The tree grows where the endpoint leaf contains a linear 

regression model (Kuhn et al., 2021; Zhou et al., 2019). Then a series of “if-after-after” rules are 

created, where the rule has an associated multivariate linear model, afterwards, the value is predicted 

from the corresponding model after the set of covariates satisfies the conditions of the rule (Zhou et 

al., 2019). 

The performance of the three machine learning methods has been tested and achieved 

considerable accuracy to map tropical peat thickness (Rudiyanto et al., 2018). Field data of peat 

thickness were used as the reference which was then split into training (80%) and test samples (20%). 

Training data were used for peat depth modeling, while test data were to test the performance of the 

model developed from training data. The performance of modeling was evaluated using 10-fold cross-

validation. 
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All processing was conducted using RStudio with Caret Package that provides numerous machine 

learning methods including those used in this study, i.e., RF, QRF, and Cubist. Variable importance 

was also calculated describing the calculation of the relationship between the predictor and outcome 

by individually permuting individual predictor and assessing the effect when the corresponding 

predictor is negated (Kuhn & Johnson, 2013). The importance score is relative, where the first (most 

important) variable is scaled to have a maximum value of 100 and the others range between 0 and 

100. The score approaching 100 indicates the closeness to the first variable, and vice versa. Peat 

thickness models were evaluated using K-Fold Cross Validation to measure the coefficient of 

determination (R²) and root mean square error (RMSE) values in order to find the best model. 

                               

3.4. Carbon stock calculation 

To generate the spatial distribution of carbon stock, it is necessary to derive a map model of peat 

thickness with the best model result. The value of carbon stock is calculated based on the algorithm 

as follows: 

Cstock = Cv x V     (1) 

where Cstock denotes carbon stock (Mg), Cv denotes carbon density (Mg m-3), and V denotes volume 

(m3).  

Volume is a multiplication thickness (m) and between area (m2), where the area is calculated 

based on the pixel size of raster data (12.5 x 12.5 m). Thickness is obtained from the best model based 

on the accuracy comparison of the results of machine learning algorithms. Carbon density used in this 

study refers to a field measurement by Warren et al., (2012) conducted in 4 sites of LSNP. The carbon 

density is 0.0659 ± 0.0208 Mg m-3, resulted from the multiplication between carbon content (50.7 ± 

2.2 %) and bulk density (0.131 ± 0.043 Mg m-3) (Warren et al., 2012).  

4. RESULTS AND DISCUSSION 

4.1. Peat thickness models 

A total of 13 variables for the inputs of machine learning algorithms are presented in Fig. 2. In 

general, the inputs consist of elevation (2 variables), backscatter values (6 variables), and SAR image 

transformation (5 variables). Field data of peat thickness were used for reference in the learning 

process. The total of field samples is 237, i.e., 190 samples (80%) for modeling and 47 samples (20%) 

for testing. The input variables and training sample for references were processed using three machine 

learning regressions: RF, QRF, and Cubist, and evaluated using 10-fold cross-validation. 

The results of peat thickness modeling are shown in Fig. 3. Visually, three models have similar 

spatial distribution, showing the thicker peatlands in the middle and south of the study area, while 

lower thickness towards the edge of the dome. However, some thicker peats were found between 

thinner peats, showing that the thickness is not always gradual following the relative position to the 

edge. For more detail, Cubist model showed the patchy areas for high thickness. As shown in Fig. 4, 

high thickness values are observed in Cubist model, showing the potential of overestimation. Overall, 

the mean values of RF and Cubist models are similar, i.e., 1.877 and 1.816 m, respectively. The mean 

value of QRF model is lower (1.640 m), indicating the underestimated values.  

The accuracy of the models was assessed using coefficient of determination (R2) and RMSE 

(Table 2). The RMSE value is related to the corresponding R2 of each model. RF outperformed the 

other two algorithms with an RMSE of 0.483 m and R2 of 0.786, followed by QRF model (RMSE = 

0.544 m; R2 = 0.729). The accuracy of Cubist is significantly lower than the other two models with 

an RMSE of 0.756 m (R2 = 0.514). As likely other tree model approaches, overfitting problems may 

occur in Cubist model as well (Noi et al., 2017), despite several studies also reporting its 

outperformance compared to other methods (Dias et al., 2021; Houborg & McCabe, 2018; Zhou et 

al., 2019). 
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Fig. 2. Parameters used in peat thickness modeling. 
 

Based on RMSE values, all of our models achieved an overall error of less than 0.6 m. This 

accuracy is much higher than the previous study with a range of RMSE between 1.8 to 2.8 m 

(Rudiyanto et al., 2016). It is mainly due to the undisturbed peatlands in our study area, compared to 

highly degraded peatlands in a previous study in Bengkalis Island (Rudiyanto et al., 2016). The 

variability was less complex than degraded peatlands, where anthropogenic variables such as land 

cover need to be considered in the modeling. Therefore, our methods can be adapted to cover a larger 

area in undegraded tropical peatlands. 

The mean peat thickness value based on the RF model (mean = 1.877 m) is far below the average 

peat thickness mapped by Ruwaimana et al., (2020) at 5.16 ± 2.66 m in Upper Kapuas Basin, where 

includes LSNP area. The high discrepancy is mainly due to the small area chosen for this study that 

does not cover a whole peat dome. The thicker peat is possibly located in the middle of the dome that 

is not mapped in this study. Spatial information of peat thickness is crucial to be the evidence to 

determine whether the peatlands can be used for cultivation or should be protected. According to the 

Ministerial Regulation No. 14 of 2017 concerning Inventory and Determination of the Function of 

Peat, peatlands with thickness less than 3 m are allowed for development, whereas conservation 

should be implemented for above 3 m thick peatlands. 
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Fig. 3. Peat thickness modeled by (a) Random Forest, (b) Quantile Regression Forests, and (c) Cubist. 

 

 
Fig. 4. Boxplots showing the distribution of thickness estimates based on machine learning models. 

 
                                                                                                                                                                    Table 2.  

Root mean square error (in meter) and coefficient of determination values of peat thickness models. 

Methods Root mean square error 

(RMSE) 

Coefficient of determination 

(R2) 

Random Forest 0.483 0.786 

Quantile Regression Forests 0.544 0.729 

Cubist 0.756 0.514 

 

Based on our results, 79.18% of the areas have a thickness of less than 3 m. However, it could 

not be generalized for the entire LSNP, since we only took a small area for the case study. Moreover, 

LSNP is a national park that was regulated to be a protected area, hence any land conversion is 

restricted regardless of the peat thickness. 

4.2. Variable importance for peat thickness modeling 

The importance level of variables used in modeling can be seen in Fig. 5. The variable of 

DEMNAS is highest among the others in all models (RF, QRF, and Cubist), followed by ALOS DEM. 

DEMNAS dominated the most in RF model, where the importance values of other variables are less 

than 10. In QRF model, ALOS DEM still contributed high in the modeling that exhibits the 

importance value of 50. The more distributed importance is shown by Cubist modeling. Despite 

DEMNAS and ALOS DEM representing surface elevation (Julzarika & Harintaka, 2019), both still 

achieved the highest importance. The differences of both DEM data are the sources and spatial 
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resolution. ALOS DEM is the up-sampled data from 1 arc-second (30 m) Shuttle Radar Topography 

Mission (SRTM) DEM acquired in 2000 (Alaska Satellite Facility, 2019). The IFSAR data used for 

generating DEMNAS has a higher spatial resolution, i.e., 5 m which was then resampled to 8.25 m to 

seamlessly produce a national DEM, with a more recent acquisition date in 2005. Therefore, 

DEMNAS could attain a higher score of variable importance than ALOS DEM. 

The superior importance of DEM follows research conducted by Rudiyanto et al., (2018) that 

elevation is one of the important parameters in modeling peat thickness. Visually, a positive 

relationship was also observed that the higher the height, the thicker the peat. The general 

characteristic of peatlands in South-East Asia is a convex-dome shape, describing the higher elevation 

towards the center of the dome (Takada et al., 2016). Since peatlands were formed in the depression 

area, peats could be concentrated in the center and a biconvex form was shaped. However, further 

investigation should be conducted since the mounds of underlaying mineral soils may vary while the 

elevation of peat domes is smoother (Nasrul et al., 2020). 

 

 
Fig. 5. Variable importance in (a) Random Forest, (b) Quantile Regression Forests, and (c) Cubist models. 

 

The backscatter value of the radar image is less influential in modeling the thickness of the peat 

because the radar images (C- and L-band for Sentinel-1 and ALOS PALSAR, respectively) are unable 

to penetrate the vegetation coverage on the peatland. Overall, although working at C-band, the 

importance values of Sentinel-1 are higher than ALOS PALSAR, even the ratio calculation of ALOS 

data has zero importance in all models. For instance, P-band SAR data could penetrate deeper to the 

forest floor, yet the P-band satellite is currently under development (Meyer, 2019). BIOMASS 

mission carrying P-band (Quegan et al., 2019) and NISAR with S- and L-band (Rosen & Kumar, 

2021) that will be launched in upcoming years should be considered for future studies in peat 

thickness modeling. 
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4.3. Estimating spatial distribution of below-ground carbon stock 

Carbon stock was calculated using Equation 1 with the input of the best peat thickness model 

derived from RF regression. Fig. 6 illustrates the estimated below-ground carbon stock derived from 

the best model (Random Forest) of peat thickness (Fig. 6a), presented with the standard deviation 

map (Fig. 6b) and the boxplot showing the data distribution (Fig. 6c). Visually, the spatial distribution 

of carbon stock is the same as the peat thickness with different values as illustrated in Fig. 6a. The 

total volume of peat in the study area is 5,112,687 m3 considering the pixel size of 12.5 m. The 

standard deviation of the carbon stock estimate was also quantified to show the uncertainty and 

variability (Fig. 6b). A total of 0.337 ± 0.106 Mt below ground carbon was predicted in the study 

area. Calculated based on the total area (272.33 ha), carbon concentration reached 1237.2 ± 390.5 Mg 

ha-1. This value is half the best estimate of peat carbon concentration in the country at 2772 Mg ha-1 

(Page et al., 2011), mainly because of the low depth peat of the chosen study area. The whole Upper 

Kapuas Basin was estimated to store 2790 ± 1440 Mg of carbon in every hectare (Ruwaimana et al., 

2020). This motivates future studies to apply a similar method to upscale the area covering at least 

one peat dome. 

 

 
Fig. 6. (a) Estimated carbon stock, (b) its standard deviation based on peat thickness model, and (c) a 

boxplot presenting the data distribution. 

5. CONCLUSION 

We demonstrated machine learning methods for peat thickness mapping using elevation data and 

synthetic aperture radar (SAR) satellite imageries. Random Forest (RF) regression outperformed the 

results of Quantile Random Forests (QRF) and Cubist methods based on accuracy assessment with 

an RMSE of 0.483 m and an R2 of 0.786. Among 13 variables, two elevation data (i.e., DEMNAS 

and ALOS DEM) are the most important features to model peat thickness. The longer wavelength of 

SAR data (e.g., P-band) should be explored to see the significance compared to C- and L-band data 

that did not show considerable contributions to the modeling. Based on the best method (RF 

regression), our results showed the mean peat thickness is 1.877 m with a total peat volume at 

5,112,687 m3. We estimated a total carbon of 0.337 ± 0.106 Mt in the study area with a carbon 

concentration of 1237.2 ± 390.5 Mg ha-1. The low carbon centration per area is due to the low peat 

depth in the selected study area that does not cover the whole peat dome. 
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