
Geographia Technica, Vol. 16, Issue 1, 2021, pp 97 to 112 

 

DEVELOPMENT OF A DATA-DRIVEN MODEL TO PREDICT LANDSLIDE 

SENSITIVE AREAS 

 

Seyed Ahmad ESLAMINEZHAD1 , Davoud OMARZADEH2 , Mobin EFTEKHARI3* , 

Mohammad AKBARI4   

DOI: 10.21163/GT_2021.161.09 

  

ABSTRACT: 

The occurrence of landslides has always been a problem in spatial planning as one of the environmental 

threats. The aim of the present study is to estimate the landslide sensitive areas in the Urmia Lake basin 

based on determining effective criteria and spatial and non-spatial data-driven models. The criteria 

used in this research include distance to faults, distance to roads, distance to hydrology network, land 

use, lithology, soil classes, Elevation, slope, aspect and Precipitation. The novelty of this study is to 

present new combination approaches to determine the effective criteria in landslide sensitive areas 

(Urmia Lake basin). In this regard, the geographically weighted regression (GWR) with exponential 

and bi-square kernels and artificial neural network (ANN) combined with a binary particle swarm 

optimization algorithm (BPSO). The best value of the fitness function (1-R2) for ANN, GWR with the 

exponential kernel, and GWR with bi-square kernel was obtained 0.2780, 0.07453, and 0.0022, 

respectively, Which indicates higher compatibility of the bi-square kernel than the other models. It was 

also found that the criteria used have a significant effect on the landslide sensitive zoning. 
 

Key-words: Landslide, geographically weighted regression, artificial neural network, binary particle 

swarm optimization algorithm. 

1. INTRODUCTION 

Natural disasters, as man's greatest natural enemy, kill and injure hundreds of people annually 

and leave millions homeless around the world. Landslides are one of the most devastating natural 

disasters in sloping areas (Oktorie, 2017). Landslides and soil mass movements are a form of 

geomorphological processes and are considered as a special type of natural disasters from the 

perspective of natural hazard management. The occurrence of this type of phenomenon every year in 

some parts of our country as well as other parts of the world causes significant human, financial and 

environmental losses (Zhang et al., 2020). Identifying landslide-prone areas by zoning hazard 

capability with appropriate statistical models is one of the first steps in reducing potential damage and 

landslide risk management (Ciurleo et al., 2017). Damages caused by natural hazards have always 

destroyed many human-made structures and facilities, and the identification of high-risk areas should 

be considered as one of the main programs in land management studies (Jin et al., 2019) . 

 Environmental issues and forecasting the risks and damages caused by it using spatial modeling 

is one of the main branches of GIS today, which provides accurate and up-to-date results with very 

high accuracy compared to reality. In most sources, landslides are considered synonymous with mass 

movements (Lo et al., 2018). According to this definition and classification of hazards, by collecting 

data related to these movements, areas with a high probability of occurrence can be identified and the 

establishment of sensitive facilities and the development of the body of the city in those areas can be 
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prevented. Dozens of landslides occur in different parts of the country every year and threaten many 

residential areas, roads, and facilities (Amir Yazdadi and Ghanavati, 2016). There are many methods 

for zoning landslide sensitive areas, but in general, these methods are divided into two categories: 

data-driven and knowledge-driven models. Data-driven models are highly effective in known areas 

or areas where the number of known evidence is statistically sufficient (references data). In these 

models, the purpose is to identify new locations for more detailed work, while in knowledge-driven 

models, they are effective in less known environments or where there are few targets in the area. 

Weight estimates and class estimates are based on expert judgment and do not require evidence of an 

answer  (Guevara et al. 2018;Wang and Liu 2019). Numerous studies have been conducted on 

Landslide zoning maps with approaches based on data-driven and knowledge-driven models, to name 

a few: 

 Neaupane and Piantanakulchai (2006) presented an ANP model for assessing landslide risk in a 

fragile mountainous terrain in the eastern part of Nepal. The results showed that the ANP model can 

achieve a complex relationship between landslide control factors and minimize the error caused by 

subjective judgment. Bai et al. (2010) used logistic regression for landslide susceptibility map in the 

Zhongxian–Shizhu region (China). The results showed that 2.8% of the study area was identified as 

very sensitive, while very low, low, medium and high areas covered 18.2%, 36.2%, 26.7% and 16.1%, 

respectively. From the region, the quality of the sensitivity map was confirmed, respectively, and the 

percentage of correct classification and mean square error values (RMSE) for the validation data were 

81.4% and 0.392, respectively. Felicísimo et al. (2013) used four methods  of  multiple logistic 

regression (MLR), multivariate adaptive regression splines (MARS), classification and regression 

trees (CART), and maximum entropy (MAXENT) to landslide susceptibility (Deba Valley, Northern 

Spain). The results of this study show that the best AUC values were obtained for single models MLR 

(0.76), MARS (0.76), CART (0.77) and MAXENT (0.78).  Xu et al. (2015) conducted a study on 

landslide sensitivity analysis using a combination of computer science and GIS and artificial neural 

network methods in the three valleys region. In the mentioned research, geological layers, distance to 

fault, slope, aspect, precipitation, distance to river, land user, distance to road, water difference index, 

and normalized differential index of vegetation have been used. According to the results, the accuracy 

of the model is 88% and the result of comparing the actual recorded data with the product of this 

research indicates the high accuracy of the model. Rajabi et al. (2016) investigated the possibility of 

landslides in the Azarshahr Chay catchment using fuzzy logic. In this research, the criteria of distance 

to road, distance to fault, distance to river, land use, lithology, elevation classes, slope, and aspect 

have been used. The results of this study show that 24.47, 26.4, 25.92, 17.59, and 5.77% of the area 

are in very low, low, medium, high, and very high probability occurrence classes, respectively. 

Ghorbanzadeh et al. (2019) have conducted a study on the application of multi-criteria spatial decision 

making and location of potential tourism areas in East Azerbaijan province in which the combination 

of Analytical Network Process (ANP) and Ordered Weighted Averaging (OWA) have been used to 

achieve potential nature areas. Baharvand et al. (2020) used fuzzy logic and GIS methods for landslide 

susceptibility zoning  in the Sorkhab basin as a part of the Zagros. The results showed that a 0.9 fuzzy 

gamma operator has high accuracy for the LSZ map in the study area. Also, the accuracy of the 

landslide susceptibility zoning map showed that there was a strong (R2) relationship between the 

sensitivity classes.  

Landslide zoning map production is a topic that has received a lot of attention so far, but among 

the studies conducted, some points have received less attention; first, none of these studies provide 

an adequate combination of criteria for landslide zoning. Second, proper analysis has not been used 

to determine the optimal combination of effective criteria and to prepare a landslide zoning map based 

on the effective criteria. In this study to recognizing the vulnerability of Urmia Lake basin to landslide 

sensitive, due to the availability of landslide reference map in the region, the combination of spatial 

and non-spatial data-driven models including artificial neural network (ANN) and geographically 

weighted regression (GWR) with binary particle swarm optimization (BPSO) were used to prepare 

Landslide zoning map based on determining the optimal combination of effective criteria.   

https://www.sciencedirect.com/science/article/pii/S0013795206001001?casa_token=bBLZlSBBRyAAAAAA:9D5Aizaj3Mt7TAbl3VFfdv6wD509Nc-RmHLeHJo4tko-kVsJgLgGC77_PuKVj242tqVYHBD92wY#!
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2. STUDY AREA  

The study area in the present study includes the catchment area of Lake Urmia, parts of East 

Azerbaijan province, and parts of West Azerbaijan province, as well as part of Kurdistan province. 

This catchment is one of the closed catchments in Iran, which is located in the northwest of the 

country. The highest heights of this basin include Sabalan with a height of 4811 meters and Sahand 

with a height of 3707 meters and the lowest point of the basin is Lake Urmia with an average height 

of 1280 meters. According to the Meteorological Organization, the average rainfall in the basin is 550 

mm and its main source is Mediterranean currents. The most important rivers of this basin are Ajichai, 

Zarrinehrood, and Siminehrood. The geographical position of the study basin includes 44 degrees and 

21 minutes east to 47 degrees and 91 minutes east and 35 degrees and 35 minutes north to 38 degrees 

and 49 minutes north (Fig. 1).  
 

 

Fig. 1. Geographical location of Lake Urmia catchment in Iran. 

3. DATA AND METHODS 

3.1. Spatial criteria affecting landslide 

According to Table 1, in this study, the spatial criteria affecting landslide are considered as 

independent variables. These criteria, in the order mentioned, form the particle dimension of the 

BPSO algorithm. Also, the flowchart of the research is also shown in Fig. 2. 
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                                                                                                                                                                    Table 1.  

Independent variables in this study. 

Order Criteria Order Criteria 

1 Distance to faults 6 Soil classes 

2 Distance to roads 7 Elevation 

3 Distance to hydrology network 8 Slope 

4 Land use 9 Aspect 

5 Lithology 10 Precipitation 

 

 

Input data

Independent variables

Dependent variable 

(Landslide reference 

map)

Add 1000 random points in 

the case study

Training points (70%) Testing points (30%)

Distance to faults

 Distance to roads

 Distance to hydrology network

 Land use

 Lithology

 Soil classes

 Elevation

 Slope

 Aspect 

 Precipitation

Landslide zoning map 

production Evaluation by RMSE and R2

 Selection of the best modelEffective criteria

Extract values by random 

points and normalize

GWR+BPSO

ANN+BPSO

 
 

Fig. 2.  Flowchart of steps taken in the research. 

The spatial criteria affecting landslide was obtained from the Geological Survey and Mineral 

Exploration of Iran. For implementation, each of the criteria was produced in the form of a raster map 

with a pixel size of 30 meters. According to Fig. 3, the maps of these criteria are shown in a 

normalized way. 
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Fig. 3. Map of criteria used in landslide zoning (a) Aspect (b) Distance to fault (c) Distance to road (d) Soil 

type (e) Land use (f) Precipitation (g) Slope (h) Distance to hydrology network (i) Lithology (j) Elevation. 

 

3.2. Proposed methods  

3.2.1. Artificial neural network 

Artificial neural networks are one of the computational methods inspired by the neural system of 

the human brain. One of the remarkable characteristics of this type of network is their ability to learn 

and the ability to generalize this learning, because of this feature, they make it possible to learn to 

understand patterns (El_Jerjawi and Abu-Naser, 2018). The most important advantage of artificial 

neural networks over regression methods for modeling a pattern is that there is no need for an initial 

model in linking input and output data (Lee et al., 2018). Based on the intrinsic relationships between 

data, a linear or nonlinear model is established between independent and dependent variables.  

In this study, a multilayer perceptron neural network has been used to model landslide sensitive. 

This type of neural network consists of a set of neurons arranged in different layers in a row. The law 

of multilayer perceptron learning is called the error propagation rule, which is used to estimate 

unknown network parameters. The multilayer perceptron works in such a way that a pattern is 

supplied to the network and its output is calculated. Actual output values and desired output cause the 

network coefficients to change; in such a way that a more accurate output is obtained in later stages. 

To succeed in network training, its output must be gradually brought closer to the desired output and 

the error rate must be reduced. The design ANN used in this study is illustrated in Fig. 4. 
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Fig. 4. ANN architecture applied in this study (Lee et al., 2018). 

3.2.2. Geographically weighted regression 

According to spatial autocorrelation and  spatial non-stationarity properties for spatial data, it is 

less possible to use basic global regressions such as Ordinary Least square (Murray et al., 2020). In 

this model, the spatial dependencies between the events are considered as weight matrices, and due 

to the heterogeneity of the environmental factors  and the existence of local variation, regression 

coefficients of the GWR model for observation are measured locally (Wu, 2020). The equation of the 

GWR model is calculated as Eq. 1 (Fotheringham and Oshan, 2016): 

0

( , )

n

i j i i j i

j

y u v x 
=

= +  
(1) 

where:  

yi       - the dependent variable (Landslide sensitive rate); 

xj   - the independent variables (Spatial criteria affecting landslide); 

n   - the total random points;  

εi  - the residual GWR model;  

        (ui,vi) - the coordinates of the ith point in space;  

        βj(ui,vi) - the regression coefficient;  

 

To calculate the spatial weight matrix, it is necessary to specify the desired kernel function. 

According to previous research, this study used two kernels including exponential and bi-square these 

two kernels which are calculated as Eq. 2 and Eq. 3, respectively (Oshan et al., 2019; Fotheringham 

and Oshan, 2016): 
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(3) 

where:  

dij     - the euclidean distance value between two observations i and j; 

b  - the bandwidth value; 

The regression coefficients are different for each location, so in the GWR model, local variation 

of the regression coefficients can be obtained by the standard deviation function according to Eq. 4 

(Wu, 2020): 
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where:  

      ij                 - the regression coefficient for the factor j in the observation i; 

        j   - the mean regression coefficient of factor j; 

n  - the total random points;  

To evaluate the ANN and GWR models output the Coefficient of Determination (R2) is usually 

used to measur`e the goodness of fit and the RMSE value measure the residuals distribution of the 

observation, which are obtained based on Eq. 5 and Eq. 6 (Fotheringham and Oshan, 2016): 
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where:  

      iy                 - the value for observation; 

      iy   - the estimated value for observation i; 

       n  - the total random points;  

      iy   - the mean value for total observations;  

3.2.3. Binary particle swarm optimization 

The PSO algorithm is an optimization algorithm that makes it less likely to be captured at a local 

minimum and can search uncertain and complex areas based on probabilistic rules (Aghbashlo et al., 

2019). Also in this algorithm, the solution of the proposed path is not dependent on the initial 

population and starting from each point in the search space, the solution converges to the optimal 

solution (Abed and Ahmad, 2020). After a while, Kennedy and Eberhart (1997) introduced the Binary 

PSO algorithm, which, unlike the continuous version of it, is limited to having zero and one (binary) 

variables and the velocity value can change a particle from zero to one. According to the purpose of 

this study, The BPSO algorithm has been used. In this algorithm, Eq. 7 and Eq. 8 are used to update 

the velocity and position of each particle (Kennedy and Eberhart, 1997): 
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where:  

Vi(t) - the velocity of the particle i; 

Xi(t) - the position of the particle i; 

        Vi(t + 1) - velocity of the particle i in the next position;  

        Xi(t + 1) - the position of the particle i in the next position;  

        pbest - the best position of the experience for the particle i;  

        gbest   - the best position experienced in all particles;  

        c1          - the personal learning coefficient;  

        c2                        - the collective learning coefficient; 

        w                        - the inertia weight;  

        r1, r and  ρ         - the random numbers in the range [0.1];  
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In this study the steps of the BPSO algorithm (In combination with the ANN and GWR models) 

are as follows which showed in Fig. 5: 

1. Give the initial value to a population of particles with random positions and velocities. 

2. Training ANN and GWR models and calculating the fitness function (R2) of each particle 

in this population. 

3. Stop the BPSO algorithm (reach 100 iterations), otherwise go to step 4.  If the algorithm 

reaches the condition of stopping, then the selected criteria are the same effective parameters 

in estimating landslide risk. 

4. Determine the pbest and gbest for particles. 

5. Calculate the velocity of each particle and move to the next position based on the relations 

(Go to step 2). 
 

ANN and GWR algorithm 

training

Calculate the values of the 

fitness function (R2)

Convergence check

 (100 Iterations)?

Yes

Determine pbest 

and gbest

Update the speed 

and position of 

each particle

Random production of the 

initial population

Data entry into BPSO algorithm (Dependent 

and Independent variables)

No

Landslide zoning map production 

Determining effective criteria

 
 

Fig. 5. Calculation steps of the recommended models. 

4. RESULTS AND DISCUSSIONS 

4.1. Data preparation 

In order to implement the proposed models, it is necessary to produce random points in the 

desired area. The Landslide is the result of the reference map related to June 2017 (Fig. 6a), which 

has been obtained from Geological Survey & Mineral Explorations of Iran. Then, according to Fig. 

6b, 1000 points were generated randomly and uniformly in the study area (Elfil and Negida, 2019). 

Then the values of all available information criteria for these points were calculated (In a normalized 

way). Of these, 70% for training and 30% for testing were randomly selected and used equally for all 

models. Based on previous research and trial and error method, a ratio of 70:30 was selected (Paulino 

et al., 2019). In article this ratio gives the best performance results. 
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                                   (a)                                   (b) 

Fig. 6. (a) The landslide reference map (b) The random point created in the case study. 

 

The correlation between the criteria from Eq. 9 was examined (Aad et al., 2014): 
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where:  

      x and y   - the mean of data x and y; 

n                 - the total data; 

        𝜎𝑥 and 𝜎y - the deviation of data x and y;  

As shown in Fig. 7, the correlation between the criteria is near 0. Therefore, all criteria entered 

the algorithms. 
  

Fig. 7. Correlation matrix between criteria 

 

4.2. Implement data-driven models 

  

For the implementation of the ANN and GWR models, 70% of the total data was used for 

training and 30% of the total data was used for testing, and all data were normalized before entering 

the algorithms (Paulino et al., 2019). Due to the fact that one of the most important parameters for 

evaluating data-driven models (Model compatibility with data) is the Coefficient of Determination 
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parameter (R2), therefore, the BPSO algorithm fitness function has been selected to minimize the 

value of 1-R2 (Fotheringham and Oshan, 2016). The optimal values of the initial parameters of the 

BPSO algorithm were selected based on the experiments obtained from different iterations and 

through trial and error according to Table 2. The condition for stopping to simplify the 

implementation process is the number of specific executions. 
                                                                                                                                                                    Table 2.  

Set Parameters in the BPSO algorithm. 

Parameters Value Parameters Value 

Swarm size 30 C2 2 

Total iterations 100 W 1 

C1  2 Minimum and maximum velocity [-4,4] 

Fig. 8 shows the swarm structure of the BPSO algorithm in this study, which the criteria 

mentioned in Table 1 form the particle dimension of the BPSO algorithm. 

 

 

Fig. 8. Swarm structure of the BPSO algorithm. 

Due to the random nature of the BPSO algorithm and based on previous research, this algorithm 

with the desired number of iterations was repeated 10 executions and the Best of these 10 executions 

was considered as the final output (Saeidian et al., 2018). According to Fig. 9a, by performing the 

combination of the ANN model and the BPSO algorithm, the best value of fitness function (1-R2) was 

obtained 0.2780 (the best of 10 executions). Also, According to Fig. 9b for the ANN model, four 

criteria of distance to faults, distance to roads, distance to hydrology network and aspect were 

determined as effective criteria in predicting landslide risk. In fact, Fig. 9b shows the best particle in 

terms of fitness function (R2) among all particles (30 particles) in the 100th iteration of the BPSO 

algorithm. 

Then, the GWR model with two exponential and bi-square kernels and BPSO algorithm was 

combined to determine the effective criteria in  predicting landslide risk. To implement the GWR 

model, the random points' coordinates were used as inputs in the weight matrix. According to Fig. 10, 

the best value of fitness function (1-R2) for combination the GWR model with two exponential and 

bi-square kernels and the BPSO algorithm, was obtained 0.07453 and 0.0022 (the best of 10 

executions), respectively. Also, According to Fig. 11 for the GWR model with the exponential kernel, 

nine criteria of Distance to roads, Distance to hydrology network, Land use, Lithology, Soil classes, 

Elevation, Slope, Aspect, and Precipitation and for the bi-square kernel, eight criteria of Distance to 

roads, Land use, Lithology, Soil classes, Elevation, Slope, Aspect, and Precipitation were determined 

as effective criteria in predicting landslide risk. 
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    (a) (b) 

Fig. 9. (a) The best value of fitness function by combining of ANN model and BPSO algorithm 

(b) Effective criteria in predicting landslide risk by combining of ANN model and BPSO 

algorithm 

  

(a)  (b) 

 

 

Fig. 10. The best value of fitness function by combining of GWR model and BPSO algorithm 

(a) Exponential kernel (b) Bi-square kernel 
  

(a) (b) 

Fig. 11. Effective criteria in predicting landslide risk by combining of GWR model and BPSO 

algorithm (a) Exponential kernel (b) Bi-square kernel  

In Fig. 12, the values of R2 and RMSE for the ANN and GWR models are shown. Accordingly, 

the bi-square kernel has higher accuracy in predicting landslide risk based on effective criteria. 

Iteration Iteration 

Iteration 
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Fig. 12. Comparison of ANN and GWR models in terms of R2 and RMSE 

 According to Fig. 13, the maps of predicted landslide risk (based on effective criteria) by 

combining ANN and GWR models and BPSO algorithm showed in the range [0,1]. The estimated 

landslide risk is classified into five output classes according to the Equal Interval classification 

method. According to the results obtained from R2 value (goodness of fit) and the RMSE value 

(Residuals distribution of the observation and accuracy of model), the combination of GWR model 

with Bi-square kernel and BPSO algorithm has a higher ability to predict landslide risk, which showed 

in Fig. 13c.  

As mentioned, since the regression coefficients are different for each location in the GWR 

model, local variation and spatial non-stationarity of the regression coefficients can be obtained by 

the standard deviation function. Fig. 14 shows the standard deviation of regression coefficients GWR 

model (with two exponential and bi-square kernels) for calculating the rate of local variation and 

spatial non-stationarity.  

According to Fig. 14, for the GWR model with the exponential kernel, the relationship between 

soil classes and landslide risk with displacement has the most variation and the relationship between 

Precipitation and landslide risk has the least variation. Also, in the GWR model with the bi-square 

kernel, the relationship between aspect and landslide risk with displacement has the most variation 

and the relationship between Precipitation and landslide risk has the least variation. Finally, global 

Moran’s index was used to determine the spatial autocorrelation of GWR model residuals, which is 

calculated from Eq. 10 (Zemestani and Soori, 2019): 

1 1
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( )( )
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(10) 

where:  

      xi and xj - estimated lanslide risk for random points i and j; 

        Wij               - the spatial weight matrix between random points i and j; 

        S0                       - the total of all weights;  

        X                        - the mean estimated landslide risk for random points;  

        n                       - the total random points;  
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(a)                            (b) 

  

(c) 

Fig. 13. The map of estimated landslide risk (a) ANN + BPSO (b) GWR (Exponential) + BPSO (c) 

GWR (Bi-square) + BPSO 

 

 
Fig. 14. The standard deviation of regression coefficients GWR model with exponential and bi-

square kernels. 
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Table 3, shows the values of global Moran's index for GWR model residuals with two 

exponential and bi-square kernels. According to Table 3 for the GWR model with the bi-square 

kernel, the Moran’s index has a closer value to the expected index than the exponential kernel, which 

indicates the high ability of the bi-square kernel in modeling the spatial correlation of observations.  

       Table 2.  

The values of Moran's index for GWR model residuals with two exponential and bi-square kernels. 

Parameters Kernel type 

Exponential Bi-square 

Moran’s index 0.153 0.112 

Expected index 0.000632 0.000632 

Z-Score 11.72 12.03 

P-value 0.000 0.000 

 

5. CONCLUSIONS 

Due to the increase in landslide, especially in cities and the emergence of human, financial and 

environmental risks, the identification of criteria affecting the occurrence of landslide is of great 

importance. Therefore, by identifying these criteria, we can prevent this phenomenon as much as 

possible by using public education to the people, enacting effective management laws and policies, 

and more oversight in order to deal with the stimulus criteria for increasing landslide rates. Therefore, 

in this study, we tried to analyze the role of spatial criteria affecting in predicting landslide sensitive 

risk, which has been neglected in many previous studies.  

The models used in previous research were not very suitable for spatial data and in most cases 

the spatial correlation and non-stationarity of the data were ignored. To achieve the main purpose of 

this study, the spatial and non-spatial data-driven models including GWR and ANN model were used 

to predict landslide sensitive risk based on the effective criteria. The results showed that the GWR 

model used, taking into account the characteristics of spatial autocorrelation and spatial non-

stationarity, has higher accuracy in predicting landslide sensitive risk based on the effective criteria. 

In this study, an attempt was also made to determine the effective criteria in predicting landslide 

sensitive risk in the form of another study purpose. Therefore, the binary particle swarm optimization 

algorithm was used in combination with the ANN and GWR models, which showed that the criteria 

have a significant effect in predicting landslide sensitive risk (study area). The important point is that 

the mentioned method is not limited to this case study and can be used to predict the landslide sensitive 

risk in various types of regions.  

Due to the success of the spatial data-driven model used in this research, it is suggested for future 

research other spatial data-driven models such as Generalized Method of Moments Estimation for 

Spatial Autoregressive (GMM-SAR), Matrix Exponential Spatial Specification (MESS) and 

combination of GWR with neural networks were used. 
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