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ABSTRACT: 

Seasonal characteristics of cloud properties and structure based on mesoscale properties of 

precipitation systems over the inland Indochina Peninsula (IP) and surrounding regions during the 

years 1998-2013 were investigated in this study. Using daily product from Tropical Rainfall Measuring 

Mission, the monsoon season, firstly, was demarcated to find onset and withdrawal dates for each year, 

and then to divide the period into the premonsoon, monsoon and postmonsoon seasons. In the 16-yr 

“climatology”, on average, the variations were found both in physical properties and structures of 

precipitation features (PFs) for each season. Based on applied definition, the intra-seasonal and the 

inter-seasonal variation of rainfall intensity and periodical duration length were considered to identify 

the seasonal period of each year. Mesoscale Convective Systems (MCSs) played a significant role 

through their contribution of rainfall for all periods. Sub-MCSs were major contributors of rainfall 

during the postmonsoon season, while the highest percentage of intense MCSs (IMCSs) was found in 

the premonsoon season. The enhancement of IMCs for the premonsoon season is the largest over the 

inland IP based on microwave signal and radar reflectivity sensors. Distinct spatial concentration was 

found over west and north IP for sub-MCSs during monsoon seasons. Convection intensity proxies and 

vertical radar reflectivity demonstrate intra-seasonal variation over land, were identified through 

cumulative density function analysis by enhancement of MCSs during the premonsoon season. Spatial 

distribution of PFs based on maximum height cloud average over the inland IP has shown at height 

exceeding 8 km over the western inland IP during premonsoon season. Spatial variation of the 

microphysical structure of cloud is distinctly shown by seasons based on scattering of microwave 

signals, and lightning flash counts. The most frequent lightning was found during premonsoon season 

over inland IP, while the most flash count average was also found over inland IP especially over west, 

north in highland of IP during premonsoon season. Further study should be conducted to analyze on 

seasonal periods for understanding on the variations of microphysical structure and cloud properties. 
 

Key-words: TRMM 16 years, Cloud Structure, Indochina Peninsula, Convective Cloud, Precipitation 

Features  

1. INTRODUCTION 

Rainfall characteristics and dynamic-thermodynamic environments vary from regions to regions. 

Characteristics of convective cloud differ by areas based on topography and atmospheric forcing. For 

instance, Xu (2013) found that mixed phase process on precipitation play more significant role over 

the south of China more other regions. Some extreme convective hot spots, observed by three-

dimensional precipitation radar retrieved from Tropical Rainfall Measuring Mission (TRMM), are 

founded on the steep slope and foothill regions in South America. Meanwhile, some intense 

convective features are located over the southwest foothills of the Himalayas (Zipser et al., 2006; 

Houze et al., 2007; Medina et al., 2010; Romatschke & Houze, 2010). Understanding these spatial 

and temporal variations in rainfall characteristics using satellite observation is crucial for building 

knowledge for disaster prevention in Indochina Peninsula (IP). The IP is the region located within the 
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region of the Asian monsoon. The IP is defined as a transitional zone between two Asian monsoon 

systems (Wang and Ho 2002). TRMM was launched in 1997 and ceased data collection in April, 2015 

(Li et al., 2019). The TRMM project was the first space-borne radar observation precipitation radar 

(PR) with additional sensors, including TRMM Microwave Imager (TMI), the Visible and Infrared 

Radiometer System (VIRS), the Clouds and Earth’s Radiant Energy System (CERES) and the 

Lightning Imaging System (LIS) (Kummerow et al., 1998). Long-term accumulated data based on 

TRMM observations can be used to describe the climate features of rainfall and its properties. Vertical 

profiles and horizontal variations in radar reflectivity have been used to investigate the climatic 

features at different times (e.g. Petersen & Rutledge, 2001; Petersen et al., 2002; Kodama et al., 2005; 

Xu et al., 2009).  

Understanding microphysical precipitation characteristics over the tropics is one of the keys to 

elucidating climate change (Kodama et al., 2015; Satoh et al., 2018). The two types of precipitating 

clouds in the tropics are convective and large stratiform rain areas, which are, in the main part, 

embedded in mature mesoscale convective systems (MCSs) (Houze, 1989). Both convective 

precipitation and stratiform precipitation coupled within Tropical Cyclones, resulting a long duration 

of rainfall can cause the damage and deaths from flooding (Jorgensen, 1984; Yokoyama & Takayabu, 

2008). Therefore, it is necessary to understand MCSs embedded in Precipitation Features (PFs) over 

the tropics. Nesbitt et al. (2000) developed an algorithm to identify PFs using data from TRMM PR 

and TMI. Based on definition MCSs from (Houze, 1993), precipitation systems can be successfully 

described from the convective intensity and rainfall distributions over the tropics. The finding has 

clearly shown that such features which develop over land are much more intense than similar oceanic 

features. Although the TRMM mission ended in 2015, related studies are still ongoing based on the 

PR data in storage. The University of Utah Precipitation Measuring Missions (PMM) science group 

has produced its work using all primary data retrieved from TRMM sensors on PF studies (Nesbitt et 

al., 2000; Liu et al. 2008; Liu, 2013). The event-based reanalysis database of PFs has collocated 

TRMM data to generalize precipitation and cloud features as well as study the radar, passive 

microwave and lightning characteristics of precipitating systems in the tropics. Many studies have 

been carried out using this database, including rainfall estimates validation, diurnal cycle of 

precipitation systems, global distribution of storms with LIS-detected lightning, deep convection 

reaching the tropical tropopause layer rainfall production and convective organization, and the 

categorization of extreme thunderstorms by their intensity proxies (Nesbitt et al., 2003; Nesbitt et al., 

2004; Cecil et al., 2005; Liu & Zipser, 2005; Zipser et al. 2006).  

In addition, there have been many studies to describe regional variation on PFs over the tropics 

using TRMM data. In Asia, for example, studies of the organized convective systems characteristics 

in eastern Asia, such as Mei-yu seasons, used the TRMM PF database (Xu et al., 2009). Besides, Guy 

& Rutledge (2012) investigated climatology of MCSs associated with the West African monsoon 

using TRMM PR and TMI based on 13-year (1998–2010) from the University of Utah TRMM PF 

database. Convective intensity metrics indicate that land-based systems exhibit stronger 

characteristics, such as higher storm tops, maximum 30 dBZ heights, and significant 85 GHz 

brightness temperature depressions. Rapp et al. (2014) investigated the role of storm characteristics 

on the seasonal and diurnal cycles of precipitation in four distinct regions of Costa Rica by utilizing 

The University of Utah TRMM PF database. They found that the relative importance of convective 

precipitation increases on the Caribbean side during wintertime cold air surges. However, there are 

still gaps on studying of spatial and temporal variability in the convective cloud properties and 

structure in the Inland IP using the TRMM PF database. 

In this study, our aim is to focus on precipitation structure and its properties using a TRMM 

dataset over the inland of IP and surrounding area. Most of the figures were produced using the Python 

script. This paper comprises of four sections. Section 1 provides some background and an 

introduction. Section 2 describes data and methodology: study area, the datasets, and definition of 

monsoon periods, the PFs database, and interpretation of PF parameters. Section 3 describes the 

results and discussion: finding monsoon season periods, Classified PFs, and spatial distribution on 

PFs properties. The conclusion is given in section 4. 
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2. DATA AND METHODOLOGY  

2.1 Study Area 

 

The Indochina Peninsula (IP) and surrounding areas demonstrate spatial variation of annual 

precipitation (Fig. 1a). Less annual rainfall occurs in the middle part of the IP, while large amounts 

fall over the coastal regions and surrounding seas. Moisture transportation from the Indian and Pacific 

Oceans contributes to annual rainfall in the IP during monsoon seasons. The rainfall variability over 

the IP is mainly influenced by the southwesterly monsoon from the Indian ocean during the first half 

of the summer monsoon and from the Pacific Ocean during the latter half (e.g., Matsumoto 1997, 

Takahashi &Yasunari 2006). In addition, topography is also a key factor in controlling the amount of 

rainfall over the IP (Fig. 1b). A mountainous region is located across the northern IP, while narrow 

and steep mountain ranges and basins are found in the middle part of the IP (Fig. 1b).  

  

Fig. 1. Study area (a) annual precipitation average from 1998 to 2013 from TRMM3B42. White solid box 

represents study area for analysis of convective cloud properties and structures (b) Topography of the study 

area and surrounding area over Indochina. Locations referred in text include 1) Tenasserim mountain range, 2) 

Chao Phra Ya basin, 3) Phetchabun range, 4) Khorat basin, 5) Annamite mountain Range. 

 

2.2 TRMM Dataset 

2.2.1 TRMM Version-7 3B42 Dataset 

The primary sources of data are from sensors on board the TRMM satellite namely PR, TMI, and 

LIS (Kummerow et al., 1998). The TRMM PF database (Nesbitt et al., 2000; Liu et al., 2008) from 

link http://atmos.tamucc.edu/trmm/data/trmm/level_2/rpf/ is used to assess rainfall characteristics and 

convective cloud properties over inland IP from 1998 to 2013. In addition, to define seasons, the 

TRMM version-7 3B42 from link https://disc.gsfc.nasa.gov/mirador-guide is employed (Huffman et 

al., 2007). TRMM3B42daily Version 7 has spatial resolution of 0.25° x 0.25°located from 50°S 

to 50°N with the collecting period from 1998 to 2014, and it continues as an ongoing global 

precipitation measurement (GPM) project. The infrared radiance measurements from geostationary 

satellites provide the primary source of rain estimates, which are calibrated by passive microwave 

sensors, including TMI and PR, on board TRMM.  

http://atmos.tamucc.edu/trmm/data/trmm/level_2/rpf/
https://disc.gsfc.nasa.gov/mirador-guide
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2.2.2 TRMM Precipitation Feature Database 

A new version of the PF database that was reprocessed in 2012 based on TRMM product version 

7 (Liu, 2013) is used to analyze convective characteristics inland IP for a 16-year period (1998-2013) 

before starting GPM. The PF database was developed by Liu et al. (2008), based on Nesbitt et al. 

(2000) algorithm. The PF database was updated to new version in 2008 by including both PFs and 

cold cloud features (Liu et al., 2007) to account for warm rainfall under clouds without ice. The PR-

detected Precipitation Feature (RPF) is used due to the combination level-2 files from monthly 

statistics are easily built. The PF database incorporates many standard product outputs (e.g., 2A25; 

TRMM PR3-D reflectivity) along with calculated statistics (e.g., min 85 GHz microwave brightness 

temperature) (Liu et al., 2008). The PF algorithm is used to define PFs by grouping contiguous rain 

area originally observed by the TRMM Precipitation Radar (PR) and Microwave Imager (TMI). 

Therefore, the properties of each PF, such as size, rain volume, and convective intensity proxies (e.g., 

lightning flash rate, height of radar echoes) can be summarized.  

 

2.3 Methodology 

 

As shown in Fig. 2, the TRMM data set was used in the analysis. Firstly, the periods of monsoon 

seasons were defined and calculated based on TRMM 3B42. Then, the analysis of PFs was done using 

TRMM PF database to understand precipitation structure and its. Properties based on defined 

monsoon periods. 

 

Fig. 2. Flowchart of the study. 

2.3.1 Definition of Monsoon periods 

To define the periods of monsoon seasons, onset and withdrawal dates, using 5-day mean 

(pentad), must be defined based on Matsumoto (1997). Specifically, the 5-day mean rainfall computed 

from daily rainfall TRMM3B42 is considered with annual mean pentad (Pm = (Annual 

precipitation)/73). Matsumoto (1997) defined onset and withdrawal pentad for each rain gauge 
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station, while this study, with its specific interest in the inland IP, defines the whole study area (Fig. 

1). Therefore, the onset and withdrawal pentads are representative for the white box (Fig. 1a).  

The definition of the onset (withdrawal) of summer rainy season is that the first (last) pentad in 

which the mean pentad precipitation exceeds Pm in at least three consecutive pentads after (before), 

dropping it in more than three consecutive pentads. The onset and withdrawal dates are defined as the 

middle date of the defined pentad. Therefore, the monsoon period for each year can be defined from 

the onset date to one day prior to the withdrawal date. The premonsoon period can be defined from 

1st February to one day prior to the onset date. Finally, the postmonsoon period is defined from 

withdrawal date to 30th November. 

2.3.2 Classification of PF 

The PFs are analyzed for two regions based on analysis purposes. The first region (14°-21°

N, 98°-105°E) is defined for analysis of convective cloud properties and structures over the inland 

IP, while the second region (0°-25°N, 90°-115°E) is a subset area used for discussion of spatial 

distribution of PFs. In this study, the PFs are analyzed in three periods of premonsoon, monsoon and 

postmonsoon. Areas and the presence of convective pixels are used as condition to classify further 

the selected PFs into MCSs, intense MCSs, sub-MCSs, or non-convective systems (NCs) (Xu et al., 

2009). The area used to define MCSs is based on the definition by Houze (1993) used in Xu et al. 

(2009). PFs with an area greater than 1000 km2 containing at least one convective pixel are classified 

in MCSs. Intense MCSs are classified separately from MCSs when the maximum height of 30 dBZ 

echo is higher than 8 km. Sub-MCSs are defined as PFs with an area less than 1000 km2 and occupying 

at least one convective pixel. Finally, NCs are the systems without any convective pixel, indicating 

decayed convective systems or stratiform systems. 

2.3.3 PF Interpretation Parameters 

Radar Reflectivity: Many parameters of PFs derived from PR, TMI and LIS are used in analysis 

of convective cloud properties and structures. PR parameters used are area coverage of PFs, maximum 

radar reflectivity, maximum height of 30-dBZ echo, and maximum radar echo at the height of 6 km. 

The supercooled liquid droplets or large ice particles is presented by high values of radar reflectivity 

above the freezing level. The maximum height of 30-dBZ echo indicates the updraft level which 

supercooled liquid raindrops or large ice particles can be lifted (DeMott & Rutledge, 1998). Echo 

height of 6 km can refer to electrical phenomena when echo exceeds the value of 35-40 dBZ in the 

mixed-phase region (where 0°C ≥ T ≥ -40°C) with temperature lower than -5°C reported by many 

studies (Dye et al., 1989; Williams et al., 1992; Petersen et al., 1996; Petersen et al., 1999). The 

convective cores are presented by Vertical profiles of radar reflectivity (VPRR) retrieving from 

maximum reflectivity factors of precipitation systems as a function of height (Donaldson, 1961; 

Zipser & Lutz, 1994; Xu et al., 2009). 

Passive Microwave Brightness Temperature:To prevent mix-up with low brightness 

temperatures caused by low surface emissivity of ice scattering, Polarization Corrected Temperature 

at 85 GHz from TMI (85-GHz PCT) is derived from conversion of polarization for both horizontal 

and vertical signals (Spencer et al. 1989). The 85-GHz PCT responds to upwelling scattered 

background radiation caused by ice particles lifted by the updraft as a proxy for ice water content 

integrated over depth (IWP) (Vivekanandan et al., 1991). The lower GHz PCT, the more enhanced 

IWP responds to strong convective intensity (Mohr & Zipser, 1996; Cecil & Zipser, 1999; Zipser et 

al., 2006). 

Interpretation of PF Parameters Measured from LIS: A strong updraft can produce supercooled 

cloud liquid water and large heavily rimed graupel particles in the mixed-phase clouds (Williams, 

1989). The collision between small size of ice particles with large size of graupel, producing the 

supercooled liquid water can induce charge separation leading to lightning (Saunders, 1998). 
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3. RESULTS AND DISCUSSION 

In this section, the classification on monsoon seasons from 16 years of TRMM data is described 

on the results.   The concept of rainfall in pentad (5 days) is used to compute in finding the onset and 

withdrawal dates on summer monsoon season of each year. 

 

3.1. Finding Monsoon Season Periods  

 

Based on method of defining monsoon from Matsumoto (1997), the daily rainfall estimates from 

16 years of TRMM data had been done over the white boundary box of the central area of the IP (Fig. 

1a). The onset and the withdrawal of monsoon pentads had been calculated for each year. The period 

of premonsoon, monsoon, postmonsoon dates were found for each year, depending on annual 

variation of rainfall amount. The premonsoon starting date is defined as the 1st of February annually, 

while last date of the postmonsoon is defined as being the end of November annually. The monsoon 

onset and withdrawal dates provide information about the wet and dry years. A longer duration of the 

monsoon season means more rainfall above the annual pentad mean for each pentad. In this study, 

dry spell periods are not considered during monsoon periods due to few and noncontiguous pentads. 

Using 2011 as an example, annual rainfall is relatively larger than average annual rainfall (Fig. 

1b) over the inland IP (Fig. 3a). To find seasonal periods of each year, the pentad mean rainfall is 

computed over the white solid box (Fig. 3a). In Fig. 3b, Pentad Numbers 21 and 58 are defined as 

onset and withdrawal pentads for 2011.  

 
Fig. 3. Seasonal periods defined: (a) annual rainfall in 2011 (b) pentad mean rainfall in 2011. 

Red-dashed horizontal line indicates annual mean pentad. 
 

Inter-annual variations of rainfall periods are shown in Table 1. For example, the early onsets in 

1999 and 2006 started on pentad number 19, while the longer monsoon period occurred in 1999. 

Variation of mean rainfall was also observed. In 2011, the highest mean rainfall caused massive 

flooding in the Chao Phraya basin, where locates in the middle of the IP. 

 

3.2. Classified PFs 

 

In this section, precipitation feature and geographical distribution is investigated on classified 

monsoon seasons and analyzed with classified PFs based on criteria mentioned in section 2.2.3. Next, 

the storm properties over the inland IP were analyzed using mentioned criteria in section 2.2.3. The 

vertical profile of radar reflectivity (VPRR) for classified seasons is also investigated and compared 

among classified PFs. 
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                                                                                                                                               Table 1.  

Sixteen years of statistics for seasons defined by TRMM observations from 1998 to 2013. 

 

Year 

mean rain 

(mm) 

Onset 

PT 

Withdrawal 

PT 

 Num 

Pre-MS 

Dates 

Num MS  

Dates 

Num Pt-

MS  

Dates 

1998 3.7 25 58 97 166 44 

1999 4.9 19 61 67 211 29 

2000 4.9 21 56 77 176 55 

2001 4.7 23 60 87 186 34 

2002 5.0 23 61 87 191 29 

2003 4.1 24 58 92 171 44 

2004 4.3 22 53 82 156 70 

2005 4.5 24 56 92 161 54 

2006 4.8 19 57 67 191 49 

2007 4.4 23 57 87 171 49 

2008 5.0 21 56 77 176 55 

2009 4.2 24 59 92 176 39 

2010 4.4 26 59 102 166 39 

2011 5.3 21 58 77 186 44 

2012 4.5 22 56 82 171 55 

2013 4.7 23 59 87 181 39 

 

3.2.1 PF Population and Geographical Distribution 

MCSs made a significant contribution to rainfall over the inland IP in all periods. Based on the 

white solid box (Fig. 1a) the total sample of 21,171 PFs were found over the inland IP during three 

periods (Table 2). About 24% fall into NCs class, while a large number of PFs, about 72% fall in 

Sub-MCSs class. Only 2.3% of the PFs reach the threshold of MCSs, with only 1.7% of these reaching 

the threshold definition of intense MCSs. The sample size of monsoon PFs is the largest, followed by 

the premonsoon and the postmonsoon seasons, respectively, due to the defined periods based on 

Matsumoto (1997). The premonsoon season has the largest percentage of intense MCSs and NCs 

compared to other periods. On the other hand, the small convective systems of Sub-MCSs comprise 

the largest percentage of the classified PFs during the postmonsoon season. 

 
                                                                                                                                                                Table 2.  

Precipitation Features. 
 

Period/type Tot PFs No. 

NCs 

  

Sub-MCSs 

  

MCSs 

  

Intense 

MCSs 

  

    No.  % No.  % No.  % No.  % 

Pre-MS   2296 30.6 4838 64.5 154 2.1 205 2.7 

Monsoon   17884 26.5 46356 68.8 1954 2.9 1079 1.6 

Post-MS   991 13.9 5951 83.4 128 1.8 59 0.8 

Tot   21171 23.7 57145 72.2 2236 2.3 1343 1.7 
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Geographically, MCSs concentrate in the western part of the inland IP, over the Tenasserim 

mountain range, during monsoon (Fig. 4b), while they are found with greater frequency over the 

southern part of the IP and near the equator for both land and ocean in premonsoon and postmonsoon 

seasons (Fig. 4a and 4d), respectively. Sub-MCSs is located in the western and northern regions of 

the inland IP during monsoon (Fig. 4e) and they occur with greater frequency over ocean areas during 

premonsoon and postmonsoon seasons (Fig. 4d and 4f).  

 
Fig. 4. Frequency occurrence of classified PFs for premonsoon, monsoon,  

and postmonsoon (a), (b), (c) for MCSs (d), (e), (f) for sub-MCSs. 

 

3.2.2 Storm Properties over the Inland IP 

Median values and their cumulative distribution functions (CDFs) are shown in Table 3 and Fig. 

5, respectively. The area is calculated from parameters named “NPIXELS_PR” that is the number 

of pixels observed by PR. The altitude of spacecraft’s orbit before and after booting are considered 

due to the direct effect to horizontal resolution. 
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                                                                                                                 Table 3.  

Median values of selected parameters. 
 

Period Type Area Min85pct Maxht30 Maxdbz6 

Pre-MS Tot PFs 26.0 276.6 5.0 22.5 

 MCSs 617.4 244.0 6.0 33.3 

 IMCSs 1300.5 168.3 11.3 48.0 

Monsoon Tot PFs 26.0 277.7 4.8 22.0 

 MCSs 494.2 238.1 6.0 33.6 

 IMCSs 1248.5 164.4 10.0 45.0 

Post-MS Tot PFs 26.0 279.6 4.3 21.6 

 MCSs 598.2 248.3 5.6 31.7 

 IMCSs 1196.5 173.0 10.0 43.2 

 

 
Fig. 5. Cumulative Density Function of statistics extraction from premonsoon, monsoon, and postmonsoon 

(a) area, (b) min PCT of 85 GHz, (c) max height of 30 dBZ, and (d) max dBZ at 6 km, for all PFs and MCSs 

over inland Indochina from solid white box, as shown in Fig. 1a. 

 

1) Area Structure 

PFs of different seasons do not differ in area size when all the PFs are analyzed (Table 3 and Fig 

5a). The PFs in small features dominate more than 95% being at area size smaller than 1000 km2. 

However, only the more intense systems are considered, differences in area structures are found of 

PFs by seasons. The largest-area MCSs are found in the premonsoon season, but the frequency of 
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IMCSs is not very different between premonsoon and monsoon seasons. Relatively smaller IMCSs 

are found in the postmonsoon season.  

2) Statistics for convection intensity proxies 

As shown in Table 3, median values for IMCSs during postmonsoon are the most severe 

compared to other periods, except for Min85PCT for monsoon season. Taller and stronger clouds 

(MaxHT30; MaxdBZ6) derived from PR on board TRMM are enhanced over the inland IP in the case 

of IMCSs. PFs with very weak intensity dominate in the study area presenting by high PCT values 

according to CDFs of minimum 85-GHz PCT (Min85pct; Fig. 5b). Only about 10% of the total 

features have values less than 250 K, which is used as the threshold to delineate systems with low 

rain intensity (Spencer et al., 1989). Only about 5% of all PFs indicate for the deep convection using 

threshold lower than 225 K following McGaughey et al. (1996).  

More than 60% of all PFs does not have sufficiently large hydrometeors concentration to produce 

a 30-dBZ radar echo (Fig. 5c). Besides, the shallow PFs less than 6 km are found about 50% (Fig. 

5d). In contrast to shallow PFs, more than 90% of MCSs are found to exceed a height of 6 km. A 

small fraction of MCSs is found with radar echoes at 30 dBZ reaching up to 15 km, and 6 km radar 

echo exceeding 50 dBZ. The strong MCS intensity during premonsoon is observed through ice 

scattering signal (Min85pct), vertical radar reflectivity (MaxHT30; Fig. 5c), and maximum radar 

reflectivity at 6 km (MaxDbz6; Fig. 5d). The MCS intensity is ordered from stronger to weaker by 

premonsoon, monsoon and postmonsoon, respectively. About 40% and 60% of features for both 

maximum height at 30dBZ (Fig. 5c) and Max dBZ at 6 km (Fig. 5d), which exceed for both height 

of 10 km and 40 dBZ, are found in premonsoon period. The statistics indicate the presence of larger 

super-cooled raindrops in the mixed-phase clouds during premonsoon season that are larger than those 

found in Xu et al. (2009). In addition, Guy & Rutledge (2012) used the same database PFs for 13 

years that are shorter period than this study to assess convective characteristics from May to October 

during period of African Easterly Waves. They found that mean vertical profiles of convective were 

stronger in the location of continental interior. However, this study shows that MCSs of the 

premonsoon period over the inland is stronger and higher than other seasons that are different from 

Guy & Rutledge (2012) found during monsoon period. 

 

3.2.3 Vertical Profile of Radar Reflectivity  

The reflectivity profiles as a function of height are based on VPRR from Donaldson (1961), 

which is used to produce the PF product MaxdBZ (Xu et al. 2009). VPRR is produced from radar 

echoes observed by TRMM PR at a vertical resolution of 0.25 km, from the TRMM precipitation and 

cloud feature database (Liu, 2013). VPRR indicates storm intensity respected to radar echo above the 

mixed-phase region (Szoke & Zipser, 1986; Zipser & Lutz, 1994; Cecil et al., 2005; Xu et al., 2009). 

However, recent study shows that the extreme rainfall events are mostly associated with less intense 

convection (Hamada et al., 2015). 

Fig. 6 shows the VPRR for MCSs and Sub-MCSs in the inland IP during the defined periods. 

MCSs with more intense convection according their extending echo top height are found compared 

to those of sub-MCSs. The maximum radar height for MCSs reaches to a height of more than 18 km 

for the premonsoon season. The MCSs intensity during premonsoon is the strongest among the three 

seasons (Fig. 6a), while monsoon and postmonsoon periods are in close proximity (Fig. 6b and 6c), 

indicating no significant difference in the convective structures. Sub-MCSs for both premonsoon and 

postmonsoon indicate stronger intensity than during the monsoon season, with height exceeding 15 

km (Fig. 6d, 6e, and 6f).  
In this study, stronger radar echoes between 2 and 5 km for MCSs are observed during 

premonsoon than during other periods. This enhanced radar reflectivity may be generated from the 

mixed-phase region of the premonsoon season. Compared to sub-MCSs over the South China from 

Xu et al. (2009), the inland IP has a wider range of radar echoes and heights for all periods. Larger 

liquid drops or precipitation-sized ice particles can be found in the mixed-phase region where a higher 

potential for charge separation exists (Dye et al., 1989).  
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Fig. 6. Vertical profiles of radar reflectivity (from bottom to top in 50th, 60th, 70th, 80th, 90th, 95th, 

and 99th percentile) over inland IP during premonsoon, monsoon, and postmonsoon: (a),(b),(c) 

for MCSs; (d),(e), (f) for sub-MCSs. Data used for statistical calculations are from those grids inside  

the solid white box, as shown in Fig. 1a. 

 
                                                                                                                                                     Table 4. 

 Precipitation Features with flashes counted over inland Indochina. 

 

Period/criteria PFs with flashes With 1-9 No. With 10-99 No. With >=100 No. 

  No. %       

Pre-MS 566 7.5 412 136 18 

Monsoon 2093 3.1 1749 338 6 

Post-MS 116 1.6 103 13 0 
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As identified by Xu et al. (2009), lightning activity is one of the proxies used to examine 

convective activity. The lightning activity before monsoon onset is higher than other periods (Petersen 

et al., 2002; Xu et al., 2009; Williams et al., 1992; Qie et al., 2003; Yuan & Qie, 2008). In this sub 

section, the flash rate is analyzed for all three seasons.  Not surprisingly, the highest flash rate of 7.5% 

was recorded during premonsoon over inland IP (Table 4). The flash rate decreases only 4 times from 

class 10-99 to class 1-9 in case of premonsoon seasons, while the monsoon abruptly decreases 5 times. 

The highest flash rate (>=100) was not observed in the postmonsoon season. In this study, the flash 

rate found in the inland IP is similar to that observed over the South China by Xu et al. (2009) during 

the premonsoon season. 
                                                                                                                                                                     Table 5.  

Total flash counts.  

 

Period PFs NCs Sub-MCSs MCSs IMCSs Rain area Conv area 

  Flash No. Flash No. Flash No. Flash No. Flash No. (km2 / flash) (km2 / flash) 

Pre-MS 7638 10 1227 216 6118 205.5 77.8 

Monsoon 13669 28 2268 414 10841 653.6 181.9 

Post-MS 691 0 107 23 560 366.1 163.0 

 

As shown in Table 5, flash rate caused by intense MCSs is larger than 80% in all seasons. Sub-

MCSs are the second-ranked contributors for flash rate, followed by MCSs. The smallest rain area 

per flash occurs in the premonsoon season, followed by postmonsoon and monsoon seasons, which 

is consistent with the flash rate normalized by the convective area. When compared with pre-meiyu 

season, the normalized flash count over the inland IP in the premonsoon season is about three times 

less than that observed over southern China (Xu et al., 2009). This may be due to the fact that their 

study area including PFs over sea, which produce less lightning (Nesbitt et al., 2000). 

 

3.3. Spatial Distribution on PF Properties  

 

In this section, the spatial distribution of PF properties is analyzed on maximum height of PFs. 

In addition, the spatial distribution of Lightning and Flash Count is also investigated and disussed on 

the classified seasons with the classified PFs. 

 

3.3.1 Maximum Height of PFs 

Maximum height of PFs (MaxHT) can be used as one of the cloud characteristic proxies to 

investigate severity of precipitating cloud. Spatial variation in both frequency of occurrence and 

MaxHT average is clearly shown on the seasonal variation pattern (Fig. 7). A relatively low frequency 

of MaxHT is found during the premonsoon season over the inland IP compared to near equatorial 

regions (Fig. 7a), while the average height of PFs is relatively taller than that found during other 

periods over the inland IP, with approximate height exceeding 8 km (Fig. 7d). The highest frequency 

MaxHT was found inland of the northern ICP during monsoon (Fig. 7b). The frequency of the highest 

MaxHT over southern SCS, Bay of Bengal and Andaman Sea increases during postmonsoon season 

(Fig. 7c). The tallest average MaxHT were observed in the premonsoon season over the inland IP, 

compared to PFs over sea and other seasons (Fig. 7d). The tallest PFs are located over the middle part 

of Myanmar. The spatial pattern of average MaxHT shows a similarity of distribution between 

monsoon and postmonsoon seasons (Fig. 7e and 7f). There were clearly spatial variations of MCSs 

and Sub-MCSs in the inland IP during premonsoon. In Western and central Africa, Balogun et al. 

(2020) analyzed TRMM PF database and detected echoes at high altitude much more frequently in 

the rainforest and savannah zones during March–May, but the savannahs, Sudano, and Sahel zone 

convections tend to reach higher altitude more frequently than the rainforest zones during June–
September. 
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Fig. 7. Spatial distribution of MaxHT over IP and vicinity during premonsoon, monsoon, and postmonsoon. 

(a), (b), (c) represent frequency occurrences; (d), (e), (f) represent averages. The resolution grid size is at 1° 

degree. 

 
Fig. 8. Average MaxHT and standard deviation of classified PFs over solid white box shown in Fig. 1a 

during premonsoon, monsoon, and postmonsoon. Data used for statistical calculations are from those grids 

inside the solid white box, as shown in Fig. 1a. 

 

As shown in Fig. 8, intense MCSs have the tallest average MaxHT, above 13 km. There are no 

differences observed in the height of MCSs in each season. However, greater variation was observed 

in sub-MCSs and NCs, with a storm height close to 10 km for premonsoon season. The reason for 

taller PFs being located over the IP during the premonsoon season is the variety and large population 

of Sub-MCS and NCs. The contribution of each PF type shows that NCs during post monsoon 

contribute the largest proportion up to 84% of all PF types. Sub-MCSs and NCs together comprise 

more than 95% of PF types. Using the three-dimensional structure of TRMM PR, Houze et al. (2007) 

found intense convective echoes occur just upstream, over the lower elevations of the Himalayas, of 

which sometimes extending above 17 km, indicating that exceptionally strong updraughts loft graupel 
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to high altitudes. The south Asian monsoon, supporting warm moisture, provides very warm and 

highly unstable conditions to produce orographically influenced precipitation. However, IMCSs in 

this study are not so intense compared to the South Asian Monsoons. Generally, over these hot spots 

where IMCSs are located, low-level moist air is capped by very dry air aloft to form a capping 

inversion situation that builds unstable layers (Houze et al., 2007). 

 

3.3.2 Spatial Distribution of Lightning and Flash Count for Three Seasons 

Based on ice scattering of convective core criteria using Min85PCT, convective systems are 

located on both land and sea, but spatial distribution varies among seasons (Fig. 9). In the premonsoon 

season, intense convection is sparse over the IP inland (Fig. 9a) and low Min85PCT is shown over 

the coastal areas in the eastern Gulf of Thailand and over the SCS, east of Hainan and the southern 

part of the SCS (Fig. 9d). In the monsoon season, the frequency of 85PCT is high over the northern 

IP (Fig. 9b), while intense convection occurs in the middle of the IP with relatively low intensity 

compared to the premonsoon and postmonsoon seasons (Fig. 9e). In the postmonsoon season, there 

is a high frequency of 85PCT located over the southern part the IP, Peninsular Malaysia, Sumatra and 

Borneo Islands (Fig. 9c). However, extremely intense convection is located over the middle and north 

of the IP, with relatively low 85PCT (Fig. 9f). 

 
Fig. 9. PFs Locations categorized by min PCT of 85 GHz during premonsoon, monsoon, and postmonsoon (a), 

(b), (c) frequency of occurrences; (d), (e), (f) average. The resolution grid size is at 1° degree. 

 

Flash count is calculated where the number is greater than zero. Generally, flash frequency over 

land is much greater than over open water (Fig. 10). The average flash count during the premonsoon 

season is higher than other seasons, with flash numbers exceeding 20 counts per PF over the northern 

region of the inland IP. Flash numbers are consistent with frequency over the IP during the 

premonsoon season. While the flash frequency seems high over the Malay Peninsula and north 

Sumatra, which is low compared to the IP. Liu et al. (2020) found that favorable environments of high 

flash rate thunderstorms in the tropics are characterized by higher Convective Available Potential 
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Energy, lower Convection Inhibition, and weaker wind shear, compared to the high flash rate 

thunderstorms in the subtropical regions. In the monsoon season, flash frequency increases over the 

IP and offshore areas in the southern region, although the flash number is relatively low compared to 

the premonsoon season. The finding, in this study, the higher flash rate in the premonsoon season is 

consistent with findings by Xu et al. (2010) regarding the flash rates before Mei-Yu onset. In the 

postmonsoon season, the flash frequency dramatically decreases over the IP, but it increases over the 

Malay Peninsula. Overall, the flash number is relatively high, but it is not consistent across the IP 

compared to other high frequency areas. Mao and Li (202) found that lightning activity over South 

China during spring, corresponding to premoonson season of this present study, has shown 

interannual variations and significantly correlated with El Niño–Southern Oscillation (ENSO) by 

having frequent lightning in El Niño events. 

There are many studies that have compared the characteristics of MCSs over both land and ocean. 

The enhanced convective systems over land are larger than those found over ocean regarding to 

structures and properties (LeMone & Zipser, 1980; Zipser & LeMone, 1980; Xu, 2013; Xu et al., 

2009; Yuan & Qie, 2008). Generally, oceanic cloud systems have less intense embedded convection, 

but can form wide stratiform regions, while continental MCSs often have more intense embedded 

convection (Nesbitt et al., 2000; Houze et al., 2015; Toracinta et al., 2002). Nesbitt et al. (2000) and 

Toracinta et al. (2002) identified PFs using criteria of intensity and areal based on TRMM PR data by 

collocating them with the simultaneous passive microwave sensor measurements on frequencies of 

ice scattering. They found that convection over tropical landmasses is characterized by more 

lightning, stronger ice scattering, and more intense radar echo in the upper levels of convective clouds 

than in precipitating clouds over tropical oceans. Using aircraft to measure vertical draft velocities, 

deep convection over tropical oceans is typically found to be much lower than over land (LeMone & 

Zipser, 1980; Zipser & LeMone, 1980). Therefore, the high updraft velocity over land can support 

the generation of large supercooled water concentrations required for the graupel and hail particle 

formation associated with charge separation. 

  
Fig. 10. Locations of PFs categorized by Flash Count during premonsoon, monsoon, and postmonsoon 

(a), (b), (c) frequency of occurrences; (d), (e), (f) average. The resolution grid size is at 1° degree. 
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4. CONCLUSIONS 

Using the seasonal definitions to define onset and withdrawal dates for monsoon based on the 

daily TRMM 3B42 dataset, the premonsoon, monsoon and postmonsoon seasons were found for each 

year over the inland Indochina Peninsula (IP) and surrounding regions. Climatology of cloud 

properties and structure from 1998 to 2013 (16 years) over the inland and surrounding regions were 

investigated based on TRMM Precipitation Features (PFs) database constructed by the university of 

UTAH, derived from original sensors of the TRMM project. The major findings of this analysis are 

as follows: 

Intra-seasonal and inter-seasonal variation of rainfall intensity and periodical duration are clearly 

found based on the applied definition to identify the seasonal period of each year. Mesoscale 

Convective Systems (MCSs) play a significant role for all periods. Sub-MCSs are major contributors 

of rainfall during the postmonsoon season, while the highest percentage of intense MCSs (IMCSs) is 

found during the premonsoon season. Geographically, western and northern parts of the inland IP 

show the most frequent occurrence of sub-MCSs and MCSs during the monsoon season, while the 

frequency of occurrence of MCSs and sub-MCSs during the postmonsoon season is highest over the 

southern part of the IP, and over sea during, respectively. 

In the case of IMCSs, taller and stronger clouds (MaxHT30; MaxdBZ6) identified from PR on 

board TRMM are found in greater numbers over the inland IP. IMCSs in the premonsoon season are 

the most numerous over the inland IP, based on microwave signals and radar reflectivity sensors, with 

distinct spatial concentration over western and northern regions of the IP for sub-MCSs during the 

monsoon season. Convection intensity proxies and vertical radar reflectivity have shown intra-

seasonal variation over land from cumulative density function analysis by enhancement on MCSs 

during the premonsoon season. The intensity of MCSs during the premonsoon season is observed 

through ice scattering signal (Min85PCT), MaxHT30, and MaxdBZ6. The MCSs for three periods 

have shown more intense properties compared to sub-MCSs. The maximum height exceeds 18 km 

for the premonsoon season as measured by Vertical Profile of Radar Reflectivity (VPRR). 

Based on ice scattering of convective core criteria using Min85PCT, convective systems are 

found on both land and sea, but spatial distribution varies among seasons. Spatial variation on 

microphysical structure of clouds is distinctly shown by seasons based on scattering of microwave 

signals and lightning flash counts. Lightning is relatively more frequent over land than over 

surrounding ocean. The most frequent lightning over the inland IP is found during the premonsoon 

season, while the highest average flash count over inland IP is also found over the west, north of the 

IP highlands during premonsoon season. The transitional period between seasons is interesting due to 

the properties and structure of precipitation systems occurring over both land and oceans because the 

difference in microphysical clouds involved during the periods. Limitation of this study is that the 

fine resolution data of ground-based radar is not used to investigate in structure of extreme storm 

cases. Future research should attempt to elucidate this to be useful information to people to avoid the 

extreme weather on the transitional period. Satellite products based on TRMM legacy and ground-

based radar will be used in the future analysis over the IP and surrounding seas. 
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